
Prof. Fateman CS 164 Lecture 4 1

Overview of MiniJava

Lecture 4

Prof. Fateman CS 164 Lecture 4 2

Course Administration

• If you drop the course, please make it official
• If you are on the waiting list, see Michael-

David Sasson in 379 Soda Hall
• I think that anyone enrolled can get ID card

registered to get into Soda Hall after hours.
– Go to CS reception (Soda Hall 3rd floor)

• Questions about course policies?

Prof. Fateman CS 164 Lecture 4 3

Andrew Appel, the textbook author is at
Princeton University

• The first version of our text used a language
named “Tiger” (the Princeton mascot).
Designed by Appel for teaching about
compilers.

• Why is designing a new language and
describing it so hard?

• Why?
– Except if it is trivial, there are many little details.
– Describing a language: how? Axiomatically?

Informally? Operationally?.

Prof. Fateman CS 164 Lecture 4 4

Why the change?

– Except if it is trivial, there are many little details
to a language that must be nailed down.
• Syntax
• Semantics
• Pragmatics

– Tiger was simple/tricky/boring.(?)
– How to be formal yet readable? Definition

Axiomatically? Informally? Operationally?.

Prof. Fateman CS 164 Lecture 4 5

MJ Overview

• MJ is a language that is supposed to be
strictly a subset of Java.

• Designed to
– Provide a useful one-semester exercise
– Give a taste of implementation of modern

• Abstraction
• Static typing
• Memory management
• Object Oriented implementation of functions

• How to leave out things?

Prof. Fateman CS 164 Lecture 4 6

Reminscent of the novel Gadsby by Ernest Wright

• The entire manuscript of Gadsby was written
in a subset of the English language. Namely,
without the letter “e”

• http://www.spinelessbooks.com/gadsby/

Prof. Fateman CS 164 Lecture 4 7

From page one of Gadsby …
A child’s brain starts functioning at birth; and has, amongst its
many infant convolutions, thousands of dormant atoms, into which
God has put a mystic possibility for noticing an adult’s act, and
figuring out its purport.
Up to about its primary school days a child thinks, naturally, only of
play. But many a form of play contains disciplinary factors. “You
can’t do this,” or “that puts you out,” shows a child that it must
think, practically or fail. Now, if, throughout childhood, a brain has
no opposition, it is plain that it will attain a position of “status quo,”
as with our ordinary animals. Man knows not why a cow, dog or lion
was not born with a brain on a par with ours; why such animals
cannot add, subtract, or obtain from books and schooling, that
paramount position which Man holds today.
But a human brain is not in that class. Constantly throbbing and
pulsating, it rapidly forms opinions; attaining an ability of its own; a
fact which is startlingly shown by an occasional child “prodigy” in
music or school work. And as, with our dumb animals, a child’s
inability convincingly to impart its thoughts to us, should not class
it as ignorant.

Prof. Fateman CS 164 Lecture 4 8

Anyway, Lexical matters in MJ are reasonable
subset

• Identifiers begin with a letter
• Integers and Booleans (true, false) are the

only basic data types.
• Binary arithmetic or logical operators are && <

+ - *
• Additional operators are ()[]{}=.!;
• NO Strings. NO floats.
• Comments are /* */ or // to end of line. NOT

nested, contrary to p. 484. (but we will allow
nests)

Prof. Fateman CS 164 Lecture 4 9

Restrictions that are major simplifications in MJ vs
Java

• There is a main class with additional class
declarations at the top level.

• No overloading.
• No classes defined within classes.
• All methods are public.
• No initializers by calling <name of> class
• No INPUT (all data must be literal integers in

the program body).

Prof. Fateman CS 164 Lecture 4 10

Semantics: what does an MJ program compute?

• Conditions for an alleged MJ program to be legal.

1. The program must grammatically fit in the terms of
the (page 485) MiniJava grammar.

2. The program must be legal Java. In which case---
The meaning of the MJ program is the same as

the corresponding Java program.

• Why does this help?
– There is a readily available reference implementation (javac,

java)
– There are (many) books, including some standards, that can

provide informal descriptions, formal descriptions, examples.

Prof. Fateman CS 164 Lecture 4 11

Semantics: Is this just a cheap trick?

• Yes, but you probably think you know Java, so
you might not mind.

• Even if you don’t know Java
– There is a readily available reference

implementation (javac, java) for your computer.
– There are (many) books, including some standards,

that can provide informal descriptions, formal
descriptions, examples of Java programs.

– There are examples of MJ programs in the text’s
web site (also locally)

Prof. Fateman CS 164 Lecture 4 12

Java and even more so, MJ, can be written in Lisp

• Java’s authors were influenced by Common Lisp (G.L.
Steele, Jr. especially), for example, implicit pointers
(like lisp, not C)

• Lisp, Java, and MJ all use garbage collection: We don’t
have to write one, which is what would have to be done
if we implemented MJ in C.

• We can implement operations in Lisp that are
supersets of MJ and then cut them off at the knees if
we want to be strict. E.g. Lisp can read integers of any
length (or operate on them). A strict implementation
would truncate them to what’s legal in Java.

Prof. Fateman CS 164 Lecture 4 13

MJ Primitive Types, Constructors

• Integer
• Boolean
• No strings, characters, floats

• Ways of combining
• Arrays
• Classes /methods /variables/ inheritance

Prof. Fateman CS 164 Lecture 4 14

MJ variables live in classes or instances

class Point {
int x; int y;
public boolean Init

(int newx, int newy)
x = newx; y=newy;
return true;}

//…
Point a; boolean z;
a = new Point; z=a.Init(3,4);

• The value for “a” is [a pointer to] a record with a
slot for each attribute.

x y
3 4

Prof. Fateman CS 164 Lecture 4 15

Methods are really functions

• Methods have names, parameter lists with types,
optional return type (else VOID), bodies, and
lexical scope.

• The names are distinguished by the classes of the
instance being referenced, as well as the types of
the arguments. Names have scope within methods.

• A simple single-inheritance hierarchy exists for
classes. [maybe compare to OO in Scheme, CLOS?]

• All programs are defined in a global lexical
environment which includes built-in functions like
system.out.println -- and not much else.

Prof. Fateman CS 164 Lecture 4 16

Information Hiding in MJ

• Overloading is forbidden.
• Names are visible lexically (as in Scheme!)
• But not nesting makes most of this trivial.

Prof. Fateman CS 164 Lecture 4 17

Print is really very weak

• Print only prints integers, which it magically
knows about, but doesn’t know about strings or
anything else.

Prof. Fateman CS 164 Lecture 4 18

MJ has rather simplistic object oriented stuff in it

• So how will we learn about cool OO stuff,
beyond that in Java?
– We will do this in ANSI CL, later, and in a neater

form.

Prof. Fateman CS 164 Lecture 4 19

MJ Types

• All variables must be declared
– compiler cannot infer simple types for variables

from initial values
• All intermediate expressions, e.g. in 3*(x+4*y)

are of obvious types.
• No “casts”.

Prof. Fateman CS 164 Lecture 4 20

MJ Type Checking: any holes?

Instances exist before they have values.

If an implementation checks for this possibility at
runtime, all other type errors should be identifiable
by a static compile-time checking program.
(Compare to, say Lisp, or C).

Are there any other runtime conditions that need to
be checked? [Assume MJ allows input]

Prof. Fateman CS 164 Lecture 4 21

Other components: Expressions, Statements

• Mostly a Statement language + *,- …
• Loops:
• while (E) do S
• Conditionals if E S else S
• if E S
• Arithmetic, logical operations
• Assignment x = E
• Access x.length, this.fun(..)

• Sequences {S ; S; …}

Prof. Fateman CS 164 Lecture 4 22

Compare to Lisp which is

Mostly an EXPRESSION language

in Java and MJ, this is illegal: x=if z 3; else 4.
in Lisp, this IS legal: (setf x (if z 3 4))

(Java but not MJ has a conditional expression
x= (z)?3:4 though…)

Prof. Fateman CS 164 Lecture 4 23

MJ Memory Management

• Memory is allocated every time an instance of
a class or an array is created. Calls can be
recursive requiring a stack. We can allocate
space (in fact my MJ implementation does…)
on a heap for environments (remember
CS61a?)

• Memory is deallocated automatically when an
object is not reachable anymore
– Done by the garbage collector (GC)
– We use the Lisp GC, but it is done “automagically”

Prof. Fateman CS 164 Lecture 4 24

Course Project

A Lexical Analyzer
- MJ source -> token-stream

A type-checker
– MJ source token-stream intermediate code =

data for typechecker.
A complete code tree for an interpreter

– MJsource token-stream intermediate code =
data for simple interpreter to be evaluated

Add this to an interpreter and you can run MJ.

Prof. Fateman CS 164 Lecture 4 25

Course Project / II

• Modify interpreter so we have a complete compiler
– MJ … our own assembly language for which we

also have an assembler and a machine simulator.
• Split in 6 (or so) programming assignments (PAs)

– Lex, Parse, IC (augmented parser),
typechecker, interpreter (given to you?),
compiler

• There is adequate time to complete assignments well
before the end of the semester.

• Individual or team (max. 2 students)

Prof. Fateman CS 164 Lecture 4 26

Programming Assignment I reminder

• Due TONIGHT,Thursday, 11:59PM
– Turn in via the SUBMIT command:

• cd to your directory, say hw1, with files hw1.cl and
README

type submit hw1

Prof. Fateman CS 164 Lecture 4 27

Programming Assignment II

• Due Sept 22. 11:59PM
– Lexical analysis, skeleton code provided.
– Tools vs hand-coding

	Overview of MiniJava
	Course Administration
	Andrew Appel, the textbook author is at Princeton University
	Why the change?
	MJ Overview
	Reminscent of the novel Gadsby by Ernest Wright
	From page one of Gadsby …
	Anyway, Lexical matters in MJ are reasonable subset
	Restrictions that are major simplifications in MJ vs Java
	Semantics: what does an MJ program compute?
	Semantics: Is this just a cheap trick?
	Java and even more so, MJ, can be written in Lisp
	MJ Primitive Types, Constructors
	MJ variables live in classes or instances
	Methods are really functions
	Information Hiding in MJ
	Print is really very weak
	MJ has rather simplistic object oriented stuff in it
	MJ Types
	MJ Type Checking: any holes?
	Other components: Expressions, Statements
	Compare to Lisp which is
	MJ Memory Management
	Course Project
	Course Project / II
	Programming Assignment I reminder
	Programming Assignment II

