
Prof Fateman CS 164 Lecture 3 1

A brief survey of programming languages:
motivation and design/ continued

Lecture 3

Prof Fateman CS 164 Lecture 3 2

Life beyond Fortran (1959), Algol (1960), Lisp 1.5
(1960), Cobol (1961)

“Significant” languages, commercial and/or intellectual
COBOL (1961, 66, .. PL/I),
BASIC (1964) significantly "interactive" at Dartmouth Univ;
(Algol-like languages: PL/I, Pascal, Algol 68, B, C, C++,
Modula, Scheme (1975), Ada, Java, C#),
String-processing languages (snobol I-IV, tcl, Perl),
Functional languages (APL, ML, Haskell, Logo, Lisp),
Visual programming,
Descendents of Fortran, 1959 (I,II, IV, 66, PL/I, 77, 90).
Stack languages (IPL, FORTH, PostScript)
Logic programming (Prolog)
OOP (Simula67, Smalltalk, C++, CLOS/lisp)
Interactive Math (Matlab, Maple, Mathematica, MathCAD)

Prof Fateman CS 164 Lecture 3 3

Even more, Algol, Cobol

There are other languages as well, especially in particular
application areas (e.g. controlling machine tools, telescopes,
controlling computer jobs, generating reports from databases)
but certainly many languages that intend to address a general
audience. There is also a journal of the history of programming
languages, and a number of survey books.

And there are newsgroups: comp.lang.*
There are over 100 language groups, some subdivided
further (C++, Java, Lisp))

Prof Fateman CS 164 Lecture 3 4

Are they really different?

If I've missed your favorite programming language,
sorry.

There is a tendency for each of us to think that all
programming languages must look pretty much like the first
programming language learned. E.g. everything is like Basic. or
Pascal. or C.

When you learned Scheme, did you change your mind?

So is everything essentially like Java or essentially like Lisp?

Yes and no.. Programming languages that look quite different
include snobol, prolog, postscript...

Prof Fateman CS 164 Lecture 3 5

Are they really different?

We will see that the most visible part of a language, its
syntax, is almost the first thing removed by a compiler. So
much so that after eliminating the “syntactic sugar” many
languages are nearly identical.

There are still issues that transcend superficial language
differences beyond the syntax:
Variables, memory, scope, the balance between few
primitives + extension vs. many built-in features, security,
and other notions (much later on in this course).

Prof Fateman CS 164 Lecture 3 6

A closer look at Fortran

If we look at the first Fortran (= Formula Translator)
from a modern perspective it seems terribly restricted
(IF, DO, GOTO).

But the goals of the Fortran project at IBM were to
produce efficient code because it was believed that
the only way to succeed versus assembler was to
produce fast code.

This was false, but in 1959, who could tell...

Prof Fateman CS 164 Lecture 3 7

A closer look at Fortran

Other restrictions forced by reality of IBM 704 computer:
Any compiler had to run on machines that were tiny and
slow by our standards.

We can explain the 3-way IF by a machine instruction on
IBM 704

IF(a) 1,2,3

Prof Fateman CS 164 Lecture 3 8

A closer look at Fortran

"One of the 704's unusual features was that core storage
used signed magnitude, the arithmetic unit used 2's
complement, and the index registers used 1's complement.
When FORTRAN was implemented on the IBM product that
replaced the 704, 7094 etc. series, the 3 way branching if
went to the wrong place when testing negative zero.
(It branched negative, as opposed to branching to zero). "

Prof Fateman CS 164 Lecture 3 9

A closer look at Fortran

Statement numbers as targets for GOTOs or branches

i,j,k... n started integer variables. N23 was an integer.
other letters started floats. X43 was a float.
No other declarations.
Easy to make mistakes by misspelling.
One way around this is to require humans to
type everything at least twice (=declarations), as in Java.

Prof Fateman CS 164 Lecture 3 10

A closer look at Fortran

Fortran had weak input and output; not as bad as Algol
which had NO input/output.

Fortran was a significant step up from what went before…
there were symbolic assemblers and some ‘higher level’
tools – for example, packages that implemented floating
point instructions as macros.

Prof Fateman CS 164 Lecture 3 11

A closer look at COBOL

COBOL (1960) (Common Business Oriented Language) by
contrast to Fortran was (and still is) almost ALL
input/output. Big features: provided for records of
characters and numbers. Written by a committee under
government sponsorship, COBOL became an important
standard, and is still widely used.

We’ve never taught much about it here, even though the
university payroll may rely on it.

Prof Fateman CS 164 Lecture 3 12

A closer look at Algol (60)

Algol 60 (Algorithmic Language) was a very influential
language, a quantum leap over its predecessors (and many
of its successors!).

The Algol 60 Report, first used BNF: a formal grammatical
presentation of the syntax of the language. Combined with
natural language semantic descriptions, the Report was a
breakthrough in defining a programming language. (There is
an attempt to follow this route in the Java Language
Specification.)

Call by value and call by name.

NO Input/Output.

Recursion (it was not in Fortran).

Prof Fateman CS 164 Lecture 3 13

A closer look at Algol (60)
There were many attempts to clean up the trouble spots and
include extra features like I/O. The most commonly used was
probably Pascal (1968).

Another re-design, Algol 68 had limited appeal (too complex)
and never caught on.

Pascal/(Pascal named for Blaise Pascal, French mathematician)
By Niklaus Wirth … rode a wave interest in "Structured
Programming (Dijkstra's Goto considered harmful, 1968)
http://www.computerhistory.org/timeline/1968/dijkstra_goto.pag
e

Wirth/Pascal pushed case /while/ repeat-until/ functions
as primary control structures.

Scheme is in some ways like Algol in Lisp syntax.

http://www.computerhistory.org/timeline/1968/dijkstra_goto.page
http://www.computerhistory.org/timeline/1968/dijkstra_goto.page

Prof Fateman CS 164 Lecture 3 14

A closer look at Lisp

Lisp (List Processor) was designed in part around symbolic
manipulation, in particular encoding arithmetic tree
expressions. Weakly related to Weakly related to IPL-V,
COMIT.

A motivating test was to program a differentiation
procedure.
(nice features: using functions,e.g. with MAP,
recursion, interaction). Original lisp 1.0 or 1.5 (1959)
was 'even uglier'.
The inspiration of lambda-calculus provided some notation.
Garbage collection was invented first for Lisp.

The language developed into many threads from which two
competing approaches eventually emerged: Scheme vs.
Common Lisp

Prof Fateman CS 164 Lecture 3 15

Some other spots along the timeline

1969:UNIX released
1972 PONG and Atari Corp

1979 Visicalc predecessor of Excel

1985 C++ made OO more respectable. Origins in Simula
(1967), widely used in “real” Lisp, but who is counting..

1987 Hypercard for Apple Mac
1990 Windows 3.0

Visual programming

Prof Fateman CS 164 Lecture 3 16

What is the best programming language?

Not a well-formed question.

What is the best transportation? An electric
car, mini-van, a greyhound bus, a Boeing 747, an
F-16 fighter plane, a container ship, a kayak?

“What is your favorite language?"
(You might object: for what?)

Prof Fateman CS 164 Lecture 3 17

Possible objectives for programming language

speed of compiled code (depends on
implementation, but…)
coverage – e.g. does complex double floating-
point..
applicability – web? database?
portability or availability on machine X.
Availability of many programmers who know the
language.
EASE OF PROGRAMMING CORRECT
PROGRAMMING LANGUAGE
IMPLEMENTATIONS ☺

Prof Fateman CS 164 Lecture 3 18

Other characterizations

Syntactic structure:
Nature of tokens, numbers, statements, key

words. (most visible, least important)

Approach to generality
extensible (Scheme) vs. inclusive (PL/I,

Java+libraries)

Data semantics:
Compound objects (vectors, arrays, lists)
Declarations of types (of data) associated

with names

Prof Fateman CS 164 Lecture 3 19

Other characterizations

Execution semantics: e.g. backtracking?

Subroutines, libraries

parallelism (threads, exceptions)

input/output complexity

access to machine ops (assembler)

Prof Fateman CS 164 Lecture 3 20

Other characterizations

Ability to make a program formally correspond
to a specification (possibility of proving a
program correct!)

Extensibility of types, parameterized types,
classes, inheritance.

Prof Fateman CS 164 Lecture 3 21

Other characterizations

Can we extract out of this some systematic evaluation criteria?

Characteristic Effect on 3 criteria
readability writability reliability

simplicity x x x

types x ? x
type checking x

"good syntax" x x x

abstraction x x

expressivity x x

exception handling x

Prof Fateman CS 164 Lecture 3 22

Studying history of PL can contribute to ..

(a) better understanding of the relationships between
languages/compilers/programs

(b) understanding concepts and features common to existing and
future programming languages (learn them more easily)

Prof Fateman CS 164 Lecture 3 23

Example programs in a few languages

Selected just to remind you that not all
languages are just like the ones you already
know.

Prof Fateman CS 164 Lecture 3 24

Example programs FORTH

:WASHER WASH SPIN RINSE SPIN; <return>

defines the program WASHER which calls each of those other
programs.

15 SPACES <return>

makes the computer print 15 spaces.

3 4 + <return>

makes the computer leave 7 on top of a stack

3 4 + . <return>

makes the computer leave 7 on top of a stack, then print it.

SIMILAR to: Postscript. HP “reverse polish” calculators.

Prof Fateman CS 164 Lecture 3 25

Example programs Logic (e.g. prolog)

definition of append. Various ways of ‘reading’ the program. Here’s
one way.

append([],y,y)

It is true that appending [] and y gives you y.

append(h|x,y,h|z) if append(x,y,z)

It is true that appending the string h|x, (like (cons h x) in lisp), to the
string y gives you the string h|z, if it is true that appending x and y
gives z.

There are also interpretations for proof or search.

Prof Fateman CS 164 Lecture 3 26

Example programs Fortran

DO 10 I=1,N

IF F(I) 10,12,10

10 CONTINUE

GOTO 13

12 WRITE(6)I

13

C print out the first value of i<= where f[i]=0.

…

END

Similar to Fortran II, 66, 77, PL/I, BASIC

Prof Fateman CS 164 Lecture 3 27

Example programs LISP

;; some variants of a simple program, all legal Common Lisp.
;; some people like programs with lots of keywords and not so
;; many parentheses.

(defun power(x n) ;recursive, but also slow
(if (= n 0) 1 (* x (power x (1- n)))))

(defun power(x n) ;still recursive, but faster
(labels

((square (x)(* x x)))
(cond((= n 0) 1)

((evenp n)(square (power x (/ n 2))))
(t (* x (power x (- n 1)))))))

Prof Fateman CS 164 Lecture 3 28

Example programs LISP
;; some more variants of a simple program,

;; all legal Common Lisp

(defun power (x n) ;; iterative
"compute x^n, integer n>=0"
(loop with result = 1

for exp = n then (floor exp 2)
for sqr = x then (* sqr sqr)
until (zerop exp)
when (oddp exp) do
(setf result (* result sqr))

finally (return result)))

(defun power (x n) ; compute x^n
(let ((res 1))

(do ((exp n (floor exp 2))
(sqr x (* sqr sqr)))

((zerop exp) res) ;test, return-value
(if (oddp exp)(setf res (* res sqr))))))

Prof Fateman CS 164 Lecture 3 29

Example programs LISP

;;more variants of a simple program, all legal Common Lisp

(defun power (x n)
"compute x^n"
(assert (integerp n)(n)"Power: The exponent ~s should be an integer" n)
(assert (>= n 0) (n)"Power: The exponent ~s should be non-negative" n)
(assert (numberp x) (x)"Power: The base ~s should be a number" x)

(do ((res 1 (if (oddp exp)(* res sqr) res))
(exp n (floor exp 2))
(sqr x (* sqr sqr)))

((zerop exp) res)))

Prof Fateman CS 164 Lecture 3 30

Example programs LISP

;; yet more ...all legal Common Lisp

(defun power (x n)
"compute x^n"
(declare (optimize (speed 3)(safety 0)(debug 0))

(fixnum x n))
(do ((res 1 (if (oddp exp)(* res sqr) res))

(exp n (floor exp 2))
(sqr x (* sqr sqr)))

((zerop exp) res)
(declare (fixnum res exp sqr)))) ;; 120 bytes

Prof Fateman CS 164 Lecture 3 31

More example programs LISP

;; A bunch of programs to make a list (1 2 3 ….. N)
(defun L2(n) (L2a 1 n))

(defun L2a(s e) ;s=start, e=end
(if (<= s e)

(cons s (L2a (1+ s) e))))

;; a strange version using map, and one using dotimes…
(defun L3 (n) (addem (make-sequence ‘list n :initial-element 1)))
(defun addem(r) (if r (cons (car r) (addem (map 'list #'1+ (cdr r))))))

(defun L4(n) (let ((s nil)) (dotimes (i 10 (reverse s)) (push (1+ i) s)))

;; A very Un-lispy version using “Loop”

(defun L1 (n) (loop for i from 1 to n collect i))

Prof Fateman CS 164 Lecture 3 32

Why the external LISP is almost arbitrary

;;;;;;;;;;Loop is defined as a “macro” expanded before execution.

(macroexpand '(loop for i from 1 upto 10 do (print i)))

==> ... something like this...

(let ((i 1))
(declare (type real i)) ;; otherwise (> i 10) meaningless
(block nil

(tagbody
next-loop (print i) ;; next-loop is a LABEL

(setf i (1+ i))
(when (> i 10) (go end-loop))
(go next-loop)

end-loop))) ;; end-loop is also a LABEL

Prof Fateman CS 164 Lecture 3 33

Summary

Many languages have been designed and
implemented. Some of them are interesting, some
are meritorious for various reasons. There is not
one “best” language for everything.

Prof. Fateman’s opinion: if you are prototyping a
language implementation, Lisp helps a lot.

	A brief survey of programming languages: motivation and design/ continued
	Life beyond Fortran (1959), Algol (1960), Lisp 1.5 (1960), Cobol (1961)
	Even more, Algol, Cobol
	Are they really different?
	Are they really different?
	A closer look at Fortran
	A closer look at Fortran
	A closer look at Fortran
	A closer look at Fortran
	A closer look at Fortran
	A closer look at COBOL
	A closer look at Algol (60)
	A closer look at Algol (60)
	A closer look at Lisp
	Some other spots along the timeline
	What is the best programming language?
	Possible objectives for programming language
	Other characterizations
	Other characterizations
	Other characterizations
	Other characterizations
	Studying history of PL can contribute to ..
	Example programs in a few languages
	Example programs FORTH
	Example programs Logic (e.g. prolog)
	Example programs Fortran
	Example programs LISP
	Example programs LISP
	Example programs LISP
	Example programs LISP
	More example programs LISP
	Why the external LISP is almost arbitrary
	Summary

