
Prof Fateman CS 164 Lecture 2 1

Introduction to Programming Languages and
Compilers: Parsing and More

CS164

Prof Fateman CS 164 Lecture 2 2

Recall, Lexical Analysis

• A Lexical analyzer divides program text into
“words” or “tokens”

if x == y then z = 1; else z = 2;

• Units:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;

• Some tokens variously categorized as
operators, numbers, identifiers, keywords.

Prof Fateman CS 164 Lecture 2 3

Parsing

• Once words are understood, the next step is
to understand sentence structure as we saw
in CS61a

• Parsing = Diagramming Sentences
– The diagram is a tree

Prof Fateman CS 164 Lecture 2 4

Diagramming a Sentence

This line is a simple assertion .

verbarticle noun article adjective noun

subject object

sentence

Prof Fateman CS 164 Lecture 2 5

Parsing Programs

• Parsing program expressions is similar
• Consider (in some typical language):

If (x == y) then z = 1; else z = 2;
• Diagrammed:

if-then-else

assignrelation assign

predicate else-stmtthen-stmt

If (x == y) then z = 1; else z = 2;

Prof Fateman CS 164 Lecture 2 6

Semantic Analysis

• Once we have a diagram of the sentence structure, it
is easier to write a program that attributes to it some
“meaning.”

• Some texts are not sentences (syntax errors).
• Some texts are sentences, but still have bugs (e.g.

type errors, uninitialized variables).
• Some texts have no “language” errors but just

compute the wrong thing. Or nothing. (SEMANTICS)
• Compilers perform limited analysis to catch

inconsistencies “soon”.

Prof Fateman CS 164 Lecture 2 7

Semantic Analysis in English

• Example:
Jack said Jerry left his hat at home.

What does “his” refer to? Jack or Jerry?

• Even worse:
Jack said Jack left his hat at home.

How many Jacks are there?
Which one left the hat?

Jack said Jack left his xyzzy at lalalala

Prof Fateman CS 164 Lecture 2 8

Semantic Analysis in Programming

• Programming
languages define
strict rules to avoid
such ambiguities

• This C++ code prints
“4”; the inner
definition is used

{
int Jack = 3;
{

int Jack = 4;
cout << Jack;

}
}

Prof Fateman CS 164 Lecture 2 9

More Kinds of Semantic Analysis

• Compilers perform many semantic checks
besides variable bindings

• Example in English:
Jack left her hat at home.

• Is there a “type mismatch” between her and
Jack? Yes, if we know Jack is male and her
refers to Jack.

Prof Fateman CS 164 Lecture 2 10

Corresponding Semantic Analysis in a
compiler..

• Limited analysis can catch inconsistencies
“soon”. 34+"abc" is, in most languages,
unacceptable.

• Some processors do more analysis to improve
the performance of the program. if true then
2+3 else 6 is probably the same as 5

• But this is kind of change is generally called
optimization...

Prof Fateman CS 164 Lecture 2 11

Optimization

• English optimization: “In order to be understood most
clearly, you should make your statements in the
shortest and most straightforward way.” ”Be brief”

• For computer language implementation: modify
programs so that they compute the same answer but
– Run faster and/or
– Use less memory
– In general, conserve some resource
– May remove error checks.

• The class project will not include much optimization,
though much current CS compiler research involves
this. Squeezing performance out of new weird
architectures (parallel, pipelined, distributed...)

Prof Fateman CS 164 Lecture 2 12

Optimization Example

X = Y * 0 is the same as X = 0

Maybe NO!

For some languages, this may be OK for
integers, but not for floating point numbers

Prof Fateman CS 164 Lecture 2 13

Almost the last task: Code Generation

• Produces assembly code (usually). Though it
might generate binary instructions (even lower
level) or bytes code for a “virtual” machine.
(Java, CLISP)

• There may be another optimization pass after
code generation.
– Just-in-time compilation of Java byte codes

Prof Fateman CS 164 Lecture 2 14

A trick that is used repeatedly:
Intermediate Languages (IL)

• Many compilers perform translations between
successive intermediate forms
– All but first and last are intermediate languages

internal to the compiler
– We will use Lisp data structures for several. All

these languages are encoded as trees (lists).
• ILs generally ordered in descending level of

abstraction
– Highest is source
– Lowest is assembly

Prof Fateman CS 164 Lecture 2 15

Intermediate Languages (Cont.)

• IL’s are useful because lower levels expose
features hidden by higher levels. At low level
we may see
– registers : load 1, a; load 2,b; add 1,2; store 1,c
– memory layout: data on stack, global data, ptrs
– Prefetch instructions,
– Rearrangement to avert pipeline stalls

• But lower levels obscure high-level meaning:
c:=a+b

Prof Fateman CS 164 Lecture 2 16

Some pervasive issues for implementation

• Compiling can be almost as simple as we’ve
indicated, but there are many pitfalls.
– How are erroneous programs handled?
– How to know if the compiler is correct?
– How to know if a program is “safe” to run?

• Language design has a big impact on compiler.
– Determines what is easy and hard to compile
– Course theme: many trade-offs in language design

and implementation

Prof Fateman CS 164 Lecture 2 17

Compilers Today

• The overall structure of almost every compiler
adheres to our outline.

• The relative efforts devoted to different
phases have changed since FORTRAN
– Early: lexing, parsing most complex, expensive, neat

techniques were just being figured out (1955-60)
– Emphasis on “phases” because programs did not fit

in memory! (Some compilers had 20 or more)
– Today: optimization dominates all other phases,

lexing and parsing are cheap.

Prof Fateman CS 164 Lecture 2 18

Trends in Compilation

• Compilation for absolutely highest speed is not the
sole criterion except in a few cases:
– large-scale scientific programs
– Speed-critical embedded systems (Digital Signal Processors,

advanced speculative architectures)
– Marketing of hardware (benchmarks).

• Ideas from compilation used for improving code
reliability:
– memory safety
– detecting data races
– ...

Prof Fateman CS 164 Lecture 2 19

Of all the languages .. why use Lisp?

• http://www.paulgraham.com/avg.html
yahoo!stores is written in Lisp. Our text author

explains how this is not accidental. (the travel
site, orbitz.com is also lisp based)

See also the other interesting articles on the
paulgraham web site.)

The Lisp environment supports PROGRAMMERS
first and foremost.

http://www.paulgraham.com/avg.html
http://www.paulgraham.com/avg.html

Prof Fateman CS 164 Lecture 2 20

Still to Do REAL SOON

• Learn to run emacs/lisp on your favorite
machine

• Read ANSI CL (see homework sheet for
specifics) and get started on ASSIGNMENT
1.

• Make sure you can get to at least one
discussion section

• Assignment zero (picture, please)

Prof Fateman CS 164 Lecture 2 21

A brief survey of programming languages:
motivation and design

Prof Fateman CS 164 Lecture 2 22

PDP-11/10 Programming Language Interface

0001111111000110

0000101110100100Lights

Switches

SET ADDR SET VAL

0 = switch set off

Prof Fateman CS 164 Lecture 2 23

Why use programming languages at all?

The natural language for binary digital computers is
streams of 0 and 1. Imagine how difficult it might be to
program a computer on a “naked” PDP-11/10.

set 16 on-off switches to a 16 bit binary address. Press
"set address”
set 16 switches to the contents you wish loaded there.
Press
"set value”

the circuitry conveniently provided that repeated presses of
"set value” set values in address +2 , +4 , etc.

Prof Fateman CS 164 Lecture 2 24

What is the first program YOU would write?

The first (and only) program loaded in this way was---

a program to load additional programs from some other
medium like cards, tape, disk, network interface, ...

This is a painful interface.

Programming a computer to bend toward human
readability is a natural goal.

For humans.

Prof Fateman CS 164 Lecture 2 25

If there were no humans..

If computers were conveying programs to other computers,
a stream of 0,1 .. would be pretty good.

Other objectives of a computer-to-computer language would
be compactness and perhaps error-checking.

Could a Pentium send a program to a Macintosh PowerPC this
way?

Prof Fateman CS 164 Lecture 2 26

Humans are more important

Can we program a computer so that a vague
description of a procedure in a “natural”
language like English will get it going?

(Startrek fans perhaps you recall "I, Mudd" TOS, where
Spock tries to confound the central android control by asking
it (Norman) to “compute the last digit of pi”... It goes haywire
and starts talking in a squeeky voice, )

Prof Fateman CS 164 Lecture 2 27

Humans are more important

So I tried . I asked it "What is the last digit

of pi" and it didn't talk in a squeeky voice.
It offered various web pages… For example,

David Bailey, Peter Borwein and Simon Plouffe have recently computed the ten
billionth digit in the hexadecimal expansion of pi. They utilized an astonishing
formula:

In reality, plain language is not really the goal of most
computer language designers: English is too ambiguous
and context dependent. [Define those words…]

Prof Fateman CS 164 Lecture 2 28

History/ Prog. Lang. Timeline

http://www.computerhistory.org/timeline

Some of the first programming languages were assembly language systems, or
very simple interpreters which provided floating-point "instructions" on top
of machine language. Some fundamental ideas in using stored-program computers
go back to the mid 1940's (ENIAC was built in 1942).. like subroutines,
repetition, and conditional execution based on logic.

The usual histories place the burden of being the first programming language
on Fortran (1957), with nods to Algol (1959), Lisp (1959), COBOL (1961) and
shortly thereafter an enormous blossoming of languages, most of which have
since died out. [[Why so many?: different application domains with sometimes
conflicting needs: business, science, logic/AI, OS programming]]

There is now recognition that Konrad Zuse anticipated many language ideas in
his Plankalkul language (in 1945, in Germany).

Prof Fateman CS 164 Lecture 2 29

Continued next time… Languages galore

Why were there so many?
Not sufficiently pretty?
Not sufficiently productive?
Support new “methodologies” [an embarrassing
term at best]

	Introduction to Programming Languages and Compilers: Parsing and More
	Recall, Lexical Analysis
	Parsing
	Diagramming a Sentence
	Parsing Programs
	Semantic Analysis
	Semantic Analysis in English
	Semantic Analysis in Programming
	More Kinds of Semantic Analysis
	Corresponding Semantic Analysis in a compiler..
	Optimization
	Optimization Example
	Almost the last task: Code Generation
	A trick that is used repeatedly: Intermediate Languages (IL)
	Intermediate Languages (Cont.)
	Some pervasive issues for implementation
	Compilers Today
	Trends in Compilation
	Of all the languages .. why use Lisp?
	Still to Do REAL SOON
	A brief survey of programming languages: motivation and design
	PDP-11/10 Programming Language Interface
	Why use programming languages at all?
	What is the first program YOU would write?
	If there were no humans..
	Humans are more important
	Humans are more important
	History/ Prog. Lang. Timeline
	Continued next time… Languages galore

