
Prof Fateman CS 164 Lecture 1 1

Introduction to Programming Languages and
Compilers

Prof. Richard Fateman

CS164 Fall 2005
9:30-11AM

Room 22 Warren Hall
Tuesday / Thursday

Prof Fateman CS 164 Lecture 1 2

Aministrivia

• Course home page:
http://www-inst.eecs.berkeley.edu/~cs164

• Course newsgroup: ucb.class.cs164 /note
security issues

• Pick up a class account here or at discussion
section. You can negotiate a change in section
if there is room. (TA: David Bindel)

• NEXT LECTURE and thereafter: Meet in 306
Soda Hall (“HP auditorium”) [unless there are
objections?]

Prof Fateman CS 164 Lecture 1 3

Will CS164 be the same as last or next
semester?

• No.
– We are using a different text
– We are using a different project
– We will write programs using Common Lisp, not Java or C++

• Yes.
– Topics covered will be similar.
– Sequence of topics will be similar.
– Slides (like this) will be similar. (They’ve evolved over years)
– Target languages COOL and MiniJava are not THAT

different.

Prof Fateman CS 164 Lecture 1 4

Should you wait ‘til next semester? Or
later?

• It’s your call. Professors Bodik and Necula will
use the “COOL” language. We will use a simpler
language (MiniJava).

• Professor Hilfinger has had students
implementing much more elaborate languages..

• We will build upon what you learned in CS61A,
so if you thought Scheme was neat and want
to understand that stuff better, stay here.

Prof Fateman CS 164 Lecture 1 5

Why Should You Study Compilers/
Programming Languages?

• NOTATION MAKES THOUGHT POSSIBLE

Prof Fateman CS 164 Lecture 1 6

5000 years ago: Babylonian clay tablet (base
60 numbers)

Prof Fateman CS 164 Lecture 1 7

500 years ago

• the modern + sign appeared at
the end of the 1400s.

• This illustration from 1579 is
something that looks almost
modern, particularly when you
see it is written in English,
until you realize that those
funny squiggles aren't x's--
they're special non-letter
characters that represent
different powers of the
variable x.

more info..
• wolfram: MathML conference

http://www.mathmlconference.org/2000/Talks/Keynotes/sw/
http://www.mathmlconference.org/2000/Talks/Keynotes/sw/

Prof Fateman CS 164 Lecture 1 8

330 years ago (1675: Integral Calculus)

Prof Fateman CS 164 Lecture 1 9

100 years ago
Russell/Whitehead

Principia Mathematica
1910

Prof Fateman CS 164 Lecture 1 10

Iverson’s APL (1960)

Prof Fateman CS 164 Lecture 1 11

OK, Notation helps thinking. Why ELSE
Should We Study Programming Languages?

• Improved background for choosing
appropriate tools / languages

• Increased ability to learn “new” languages or
design new ones

• Better understanding of the interchange
between implementation and design

• Appreciation of the beauty of relevant
material from CS 61a/b/c CS170, Math 55

Prof Fateman CS 164 Lecture 1 12

Course Structure

• Course has theoretical and practical aspects

• Need both in programming languages!

• Occasional written assignments = theory
– Class hand-in

• Programming assignments = practice
– Electronic hand-in

Prof Fateman CS 164 Lecture 1 13

Academic Honesty

• Re-using programs is an important engineering technique.
• BUT Please don’t use work from uncited sources
• (The Easy and Correct Solution: cite ALL sources,

including friends, TAs, staff, old projects, partners.)
• Please be sure that you understand what you hand in.
• (it is NOT OK to say “my partner did that and I don’t

know how it works”)
• If you have questions about academic honesty, (yours or

others) ask some faculty member.

Prof Fateman CS 164 Lecture 1 14

Objectives of the Course

• This course is intended to be a learning experience,
not an exercise in debugging.

• The homeworks and programs are primarily for you to
learn about programming languages and compilers.

• Programming is not an endurance test. Delaying your
project until the last minute and then staying up all
night to complete it is not a good way to learn.

• Unfortunately, assessment is part of the deal. We will
grade you on your exams (especially), but also on your
homeworks, to keep you motivated. (Details on
handout).

Prof Fateman CS 164 Lecture 1 15

The Course Project

• A “big” project. Written in Common Lisp.
• … in several easy parts
• Why Lisp?

– Typical JAVA/C++ project code size: 5,000 lines
– Typical Lisp code size: 2,000 lines.
– You are given 1000 lines in “skeletons” either way,

so the ratio is about 4:1 in favor of Lisp
– You all know Scheme, or at least you used to know

it; CL is like Scheme on steroids.

Prof Fateman CS 164 Lecture 1 16

You have been writing programs for years– what
more is there to learn?

• How do Basic, Pascal, C, C++, Assembler, Java,
Scheme differ? And WHY?

• What are the essential common threads in
design (Variables? Arithmetic? Subroutines?)

• What are the essential common threads in
implementation? Do you remember anything
from CS61a language implementation? (Some
of you did a project to partially implement
Logo).

Prof Fateman CS 164 Lecture 1 17

Overview: How are Languages Implemented?

• Two major strategies:
– Interpreters (simple, general, faster setup)
– Compilers (complex, popular, slower setup, faster at runtime)

• Interpreters run programs with only modest
“digestion”; often easily portable to many hosts.

• Compilers do extensive digestion, some of it specific
to particular machine architectures. Often not
portable.

• We will study both strategies, as well as mixtures (e.g.
Java VM, Lisp)

Prof Fateman CS 164 Lecture 1 18

Common: Interpreters and Compilers both

• Read in “source code” text.
• Construct some model of the program.
• Provide error messages.
• Adhere to some “execution model” of the

programming language.

• Important: the human programmer and the
computer must “agree” on this model: what is
the meaning of a program?

Prof Fateman CS 164 Lecture 1 19

An orthogonal issue that is sometimes discussed: Is
a language Batch or Interactive?

• Batch compilation systems dominate many production
environments; Optimizes for fast runtime. Sacrifices
debugging. (E.g. Fortran, C).

• Some languages are meant to be used interactively.
E.g. Matlab, Lisp, Logo. They could be compiled or
interpreted.

• Lisp implementations provides both
– Interpreter for faster development/debugging
– Type-checking compiler for finding more kinds of bugs, and

faster running

Prof Fateman CS 164 Lecture 1 20

There are Many Programming Languages

• Fortran, Algol, Lisp, COBOL, APL, BASIC,
Smalltalk, B,C,C++, C#, Java, etc etc… we will
talk about some of these next time in an
historical context.

• Thought for today:
– Good notation can help us think. PLs are notation:

• Different approaches
• Different applications
• Significant similarities

Prof Fateman CS 164 Lecture 1 21

Break...

• Handouts
• Demo of Lisp
• Questions?

Prof Fateman CS 164 Lecture 1 22

Let’s Get Started with the Course Material!

Prof. Fateman CS 164 Lecture 1 23

The Structure of a Typical Compiler

1. Lexical Analysis
2. Parsing
3. Semantic Analysis
4. Optimization
5. Code Generation

The first 3, at least, can be understood by
analogy to how humans comprehend English.

Prof Fateman CS 164 Lecture 1 24

Lexical Analysis (The “lexer” or “scanner”)

• First step: recognize words.
– Smallest unit above letters

This is a sentence.

• Note the
– Capital “T” (start of sentence symbol)
– Blank " " (word separator)
– Period "." (end of sentence symbol)

Prof Fateman CS 164 Lecture 1 25

More Lexical Analysis

• Human Lexical analysis is not so trivial.
Consider:

ist his ase nte nce

• Plus, programming languages are typically more
cryptic than English:

*p->f ++ = -.12345e-5

Prof Fateman CS 164 Lecture 1 26

And More Lexical Analysis

• A Lexical analyzer divides program text into
“words” or “tokens” not just at “white space”.

if x == y then z = 1; else z = 2;

• Units:
if, x, ==, y, then, z, =, 1, ;, else, z, =, 2, ;

• Some tokens are operators, some identifiers,
some are numbers and some are “keywords”.

Prof Fateman CS 164 Lecture 1 27

Parsing in a nutshell (we will spend several weeks
elaborating on this, though)

• Once words are understood, the next step is
to understand “sentence structure”.

• In fact, the term “sentence” can be used
technically as in

“Parsing a Java program is determining if a text
is a sentence in the Java grammar.”

• Parsing = Diagramming Sentences by grammar
rules
– The diagram is a tree

Prof Fateman CS 164 Lecture 1 28

Diagramming an English Sentence

This line is a simple assertion .

verbarticle noun article adjective noun

subject object

sentence

	Introduction to Programming Languages and CompilersProf. Richard Fateman
	Aministrivia
	Will CS164 be the same as last or next semester?
	Should you wait ‘til next semester? Or later?
	Why Should You Study Compilers/ Programming Languages?
	5000 years ago: Babylonian clay tablet (base 60 numbers)
	500 years ago
	330 years ago (1675: Integral Calculus)
	100 years agoRussell/Whitehead
	Iverson’s APL (1960)
	OK, Notation helps thinking. Why ELSE Should We Study Programming Languages?
	Course Structure
	Academic Honesty
	Objectives of the Course
	The Course Project
	You have been writing programs for years– what more is there to learn?
	Overview: How are Languages Implemented?
	Common: Interpreters and Compilers both
	An orthogonal issue that is sometimes discussed: Is a language Batch or Interactive?
	There are Many Programming Languages
	Break...
	Let’s Get Started with the Course Material!
	The Structure of a Typical Compiler
	Lexical Analysis (The “lexer” or “scanner”)
	More Lexical Analysis
	And More Lexical Analysis
	Parsing in a nutshell (we will spend several weeks elaborating on this, though)
	Diagramming an English Sentence

