CS162
Operating Systems and
Systems Programming

Lecture 23

Peer-to-Peer Systems

April 18, 2011
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

P2P Traffic

+ 2004: some Internet Service Providers (ISPs) claimed >
50% was p2p traffic

Internet Protocol Trends (1)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%
1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

® Email * FTP ® Other ® P2P ® Web

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.3

Page 1

Three Capstone Lectures

+ Peer-to-Peer systems (today)
+ Client-Sever (Monday)

+ Cloud computing (Wednesday, April 25)
— Invited lecture: Harry Li (Facebook)

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.2

P2P Traffic

Peak Period Aggregate Traffic Composition
(North America, Fixed Access)

» Today, around 20%

100%

* Big chunk now is
video entertainment
(e.g., Netflix, iTunes)

0%

0% mOutsideTop 5

0% m Secure Tunneling
Gaming

50% Social Networking

= Real-Time Communications

40%

mWeb Browsing
P2P Filesharing

mReal-Time Entertainment

30%

20%

10%

0%

2009 2010 Dsandvine

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.4

Peer-to-Peer Systems

+ What problem does it try to solve?

— Provide highly scalable, cost effective (i.e., free!)
services, e.g.,

» Content distribution (e.g., Bittorrent)
» Internet telephony (e.g., Skype)

» Video streaming (e.g., Octoshape)
» Computation (e.g., SETI@home)

« Key idea: leverage “free” resources of users (that use
the service), e.g.,

— Network bandwidth
— Storage
— Computation

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.5

Model

« Each user stores a subset of files

+ Each user has access (can download) files from all
users in the system

%3
@

=18

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.7

Page 2

How Did it Start?

» A Kkiller application: Napster (1999)
— Free music over the Internet
+ Use (home) user machines to store and distribute songs

Internet
@l B, i
|
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.6

Main Challenge

+ Find a “good” node storing a specified file
+ By “good” we mean:

— Has correct content

— Can get content fast

@/{a\ 8 &
E?
O Do
O
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.8

Other Challenges

+ Scale: up to hundred of thousands or millions of
machines

+ Dynamicity: machines can come and go at any time

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.9

Napster: Example

1) A client (initiator) contacts directory service to get file “C”

2) Directory service returns a (possible) close by and lightly
loaded peer (m5) storing “C”

3) Client contacts directly m5 to get file “C”

Directory
service -

B8]
mi . El
m m9
m2 <
]
B ma 20
m7
initiator
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.11

Page 3

Napster

+ Implements a centralized lookup/directory service that maps
files (songs) to machines currently in the system

» How to find a file (song)?

— Query the lookup service - return a machine that stores the
required file

» |deally this is the closest/least-loaded machine
— Download (ftp/http) the file

+ Advantages:

— Simplicity, easy to implement sophisticated search engines on
top of a centralized lookup service

» Disadvantages:
— Robustness, scalability (?)

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.10
The Rise and Fall of Napster
+ Founded by Shawn Fanning, John = ™[

Fanning, and Sean Parker "

2001 I /\/\ |

+ Operated between June 1999 and July,,

— More than 26 million users (February 'w'
2001) ol

+ Several high profile songs were leaked ,
before being released:

— Metallica’s “I Disappear” demo song
— Madonna’s “Music” single

- But, also helped made some bands
successful (e.g., Radiohead, Dispatch)

(Source: http://en.wikipedia.org/wiki/
File:Napster_Unique_Users.svg)

+ (Reemerged as music store in 2008)

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.12

Jn00 Mar0D Mayod W00 SepOD NovoD JanOi Mar0 MayOi IO SopOl

The Aftermath

- “Recording Industry Association of America (RIAA)
Sues Music Startup Napster for $20 Billion” —
December 1999

- “Napster ordered to remove copyrighted material”
— March 2001

+ Main legal argument:

— Napster owns the lookup service, so it is directly
responsible for disseminating copyrighted material

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.13

Gnutella (2000)

* How does request flooding work?
— Send request to all neighbors
— Neighbors recursively multicast the request

— Eventually a machine that has the file receives the
request, and it sends back the answer

+ Advantages:
— Totally decentralized, highly robust

+ Disadvantages:

— Not scalable; the entire network can be swamped with
requests (to alleviate this problem, each request has a
TTL)

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.15

Page 4

418

Gnutella (2000)

+ What problem does it try to solve?

— Get around the legal vulnerabilities by getting rid of the
directory service

» Main idea: Flood the request to peers in the system
to find file

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.14

418

Gnutella: Time To Live (TTL)

When the client (initiator) sends a request, it associates
a TTL with the request

When a node forwards the request it decrements the
TTL

When TTL reaches 0, the request is no longer forwarded
Typically, Gnutella uses TTL =7

Example: TTL =3

TL=3 TTL=2 TTL=1 TTL=0
B ——s =

Stop forwarding
request

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

initiator

Lec 23.16

Gnutella: Example

+ Assume a client (initiator) asks for file “C”
+ Assume TTL=2

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.17

Gnutella: Example

+ If node has the requested file it sends a reply back
— along the reverse path of the request, or
—directly to initiator

- = =
\q/ q / =
N N Y%
/ _ _ \
e [\
=) © = o
L m 4]
initiator / m\ =
= s
j = ==
= =
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.19

Page 5

Gnutella: Example

« Initiator send request to its neighbor(s)...
+ ... which recursively forward the request to their neighbors
+ After 3 hops request is dropped

& P -
\ﬁ i i

r/‘R
\

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Lec 23.18

Gnutella: Example

« Initiator request file “C” from node “m

— Initiator may pick one of several machines if receive multiple
replies
— Typically uses HTTP to retrieve data

=
_\ a / : / =
\ :
(B,
=l \ =
= g] Vi
= — N
' .
initiator m -
B m & = =
- = = ®|
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.20

Two-Level Hierarchy

+ What problem does it try to solve?
— Inefficient search

+ Main idea: organize the p2p system in a two level
hierarchy

— Flooding happens only at the top level

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.21

Two-Level Hierarchy = /=) _
a4~
» Each ultra-peer builds a director for the
content stored at its peers

m2 m3
— B mé4
]
m1 r
D:m4 =

Ultrapeer
nodes

m11
Leaf nodes

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.23

Page 6

Ve

Lx’tﬂ 9_/ a2
+ KaZaa, subsequent versions of Gnutella

+ Leaf nodes are connected to a small number of ultrapeers
(supernodes)

Two-Level Hierarchy

m3 m7
r!% i

\%z
= m8
m1

r
/H

/H
3
o%
23
8n
[0]
[0}
Q
3
oa

/[\ e

= >l mi1
mi7 m =
= B @ B ™ | eaf nodes
m m13
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.22

Gnutella: Example V=
P Nl ln

+ Query: A leaf sends query to its ultrapeers

+ If ultrapeer has requested content in its directory, the
ultrapeer replies immediately

m2 m3 m7

r% _ I 3

m13

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.24

Gnutella: Example

/)

+ Query: A leaf sends query to its ultrapeers

« If ultrapeer doesn’t have content in its directory, the
ultrapeer floods other ultrapeers

me m3
=

‘W™ =

418

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.25

(algah

418

Distributed Hash Tables (DHTSs)

* What problem does it solve?
— Scalable, low-overhead lookup protocol
— Guarantee a file is found if it is in the system

» Abstraction: a distributed hash-table data structure
— insert(id, item);
— item = query(id);

— Note: item can be anything: a data object, document, file,
pointer to a file...

» Proposals

— CAN, Chord, Kademlia, Pastry, Viceroy, Tapestry, etc

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.27

Page 7

Example: Oct 2003 Crawl on Gnutella

I rn
Ultrapeer nodes Leaf nodes
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.26
DHTs
+ Partition hash table across nodes
1
d2
5
d8
1
3
d16
8
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.28

DHT: Insertion

« Call insert(id4, item14) at m1
— Find node responsible for id4, i.e., node m3
— Insert (id14, item14) at m3

insert(id14, item14) di1 | item11 |
BTV d13 | item13 |
id1 =~~.M2 __.5414 | item14 =
id2 ==l id16 | item16
[T g !
m1 9 | item9 m4
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.29
DHT: Lookup Service
+ Key primitive: lookup service
— Given an ID, map it to a host
+ Scalability: hundreds of thousands or millions of
machines
+ One example: Chord (Lecture 15)
+ Another example: CAN (next)
Lec 23.31

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Page 8

DHT: Query

« Call query(id4) at m4
— Find node responsible for id4, i.e., m3
— Return (id14, item14) to m4

/¢
T ftemtd ;;g;’;’ (’,4_ R
_ i o d13 | item13 |'~~ 27774
id1 m d14 | jtem14 il
id2 = [l id16 | item16
[T d> | itemd
8 item vV
mi d9 [item9 ma
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.30

Content Addressable Network
(CAN)

+ Associate to each node and item a unique idin an d-
dimensional space, e.g., torus

+ Assigning d-dimensional ID to content (file):

— Use d hash functions (i.e., h(), hx),.., h«)) to compute d
coordinates using name or content

—id = (idy, id,, ..., idy), where id; = h{content);

* Assigning d-dimensional ID to new node, n,,:
1) Pick random id,,,,
2) Find node n, responsible for id,,,

3) n, may pick a new ID for n,,, id’,,, to better split the ID
space

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.32

CAN Example: Two Dimensional
Space

+ Space divided between nodes

+ All nodes cover the entire space

+ Each node covers either a square or a
rectangular area of ratios 1:2or2:1 ¢

+ Example:
— Assume space size (8 x 8)

— Node n1:(1, 2) first node that joins > 4
cover the entire space

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.33

CAN Example: Two Dimensional
Space

» Node n2:(4, 2) joins > space is
divided between n1 and n2

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.35

Page 9

418

CAN Example: Two Dimensional
Space

Node n2:(4, 2) joins - space is

divided between n1 and n2

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.34

CAN Example: Two Dimensional
Space

» Nodes n4:(5, 5) and n5:(6,6) join

418

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.36

CAN Example: Two Dimensional
Space

» Nodes: n1:(1, 2;; n2:(4,2); n3:(3, 5);
n4:(5,5);n5:(6,6

« ltems: f1:(2,3); 12:(5,0); £3:(2,1); f4:

9/

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.37

CAN: Query Example

» Each node knows its neighbors in the
ad-space

7

+ Forward query to the neighbor thatis ¢
closest to the query id -

51

» Example: assume n1 queries f4 4

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.39

Page 10

CAN Example: Two Dimensional
Space

» Each item is stored by the node
who owns its mapping in the
space

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.38

Content Addressable Network
(CAN)

+ Properties

— Routing table size O(d), i.e., each node needs to know
about O(d) neighbors

— Guarantees that a file is found in at most d*n'/d steps,
where nis the total number of nodes

+ Example: grid with_n node (d = 2)

rn

n
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.40

418

5min Break

Lec 23.41

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Efficient Large File Distribution

« Step 1: copy file from m1>m2 m1
: - =
— Duration: F/C = 1GB/1Mbps = s A 7\
8,000sec A== e
L A ey
_TY.
m5 mé6 m_ m_
. mi m2 m3 m4
+ Step 2: copy files from m1->m3 and e E =
m2->m4 AN
— Duration: 8,000sec R
o =
m5 m m m
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.43

(ABitTorrent BitTorrent (2001): The Problem

+ What problem does it try to solve?
— Efficient distribution of large files (e.g., movies)

+ Example:
— Assume we want to distribute F=1GB file to 8 other

— Assume all clients are identical and have uplink capacity

— How long does it take to distribute the file using Napster/

nodes
of C=1 Mbps

Gnutella/Kazza?

418

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.42
Efficient Large File Distribution
+ Step 3: copy files from m1->m5 my M2 m3 m4
and m2->m6, m3->m7, m4->m8 B ?] ; 0
— Duration: 8000sec Y . ‘&r I*‘:'
L
m5 m6 ‘m7 ms
+ Step k: by end of step k we
transfer file to 2% nodes
Lec 23.44

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Page 11

Efficient Large File Distribution

3
)

» Total time to transfer file to N
. F
machines: [logN]xE
— If N = 8 = total distribution time =
24,000sec

« Can we do better?

3

>3
0z

-0

@MI
-
Q |
O«

m5 mé m7 m8

* Yes!
— Divide file into chunks
— Pipeline chunk distribution

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.45

Efficient Large File Distribution

file

EECI

|

Lmiml

=

(]
L= B B Ed [N

z‘; = = = = = tep 4

+ Example:
— File size: F=1GB
— block size: B=1MB
—# of nodes: N
— Total time to distribute file:
» FIC + (N-1)*B/C =
= 1GB/1Mbps + (N-1)*1MB/1Mbps = 8,000sec + (N-1)*8sec
» If N = 8 > Total distribution time = 8,056sec

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.47

Page 12

Efficient Large File Distribution
+ Dive file into blocks of size B

« Use chain distribution

file
m1 E] m2 m3 mé4 m5 mé m7 m8
L = B sip
2 [
L] Bl g BN g Bl g | Step 2
8 [2
H—— = __2:@: __:E; Step 3
L [[0O
Lz@:@;z@;z LZZJZE;:Z}; Step 4
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.46
@BitTorrent BitTorrent (2001)

» Allow fast downloads even when sources have low up-
link capacity

+ How does it work?
— Seed (origin) — site storing the file to be downloaded
— Tracker — server maintaining the list of peers in system

— Split each file into pieces (~ 256 KB each), and each
piece into sub-pieces (~ 16 KB each)

— The loader loads one piece at a time

— Within one piece, the loader can load up to five sub-
pieces in parallel

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.48

BitTorrent: Join Procedure

1) Peer contacts tracker responsible for file it wants to
download

2) Tracker returns a list of peer (20-50) downloading same file
3) Peer connects to peers in the list

Seed (origin
Tracker server)
-
4
o 2 m2

peer O ms
/7 List

join‘\ \ (m1 m2, m7

Q/ m5
418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.49

Bittorrent: Handling Freeriders

» Free riders: peers that use the network without
contributing (with the upstream bandwidth)

+ Solution: chocking, a variant of Tit-for-Tat
— Each peer has a limited number of upload slots

— When a peer's upload bandwidth is saturated, it
exchanges upload bandwidth for download bandwidth

— If peer U downloads from peer C and doesn’t upload in
return, C chokes download to U

chock @

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.51

Page 13

418

BitTorrent: Download Algorithm

Download consists of three phases:

Start: get a piece as soon as possible
— Select a random piece
Middle: spread all pieces as soon as possible
— Select rarest piece next
End: avoid getting stuck with a slow source, when
downloading the last sub-pieces
— Request in parallel the same sub-piece
— Cancel slowest downloads once a sub-piece has been
received
(For details see: http://bittorrent.org/bittorrentecon.pdf)

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.50

» Peer-to-peer Internet
Telephony B

« Two-level hierarchy (like
KaZaa)

— Ultrapeers used to route

— ... plus a login server to

418

Skype (2003)

il login server
- -~
- - -

_ 7Y

1
1!

traffic between NATed end-
hosts...

Messages
exchanged
to login server

» authenticate users

» ensure that names are

unique across network A <> Data traffic

(Note*: probable protocol; Skype
protocol is not published)

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.52

Skype (cont’d)

» Most powerful machine elected as a host and act as a mixer
+ Example:

— B elected as host/mixer

— A and C sends their audio streams to B

— B mixes the missing streams for A and C and sends mixed
stream to each of them

+ Two-way call: 36 kb/s
« Three-way call: 54 kb/s v N

418 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.53

Page 14

418

Summary

The key challenge of building wide area P2P systems is
a scalable and robust directory service

Solutions covered in this lecture
— Naptser: centralized location service
— Gnutella: broadcast-based decentralized location service

— CAN, Chord, Tapestry, Pastry: intelligent-routing
decentralized solution

» Guarantee correctness

Bittorrent: efficient distribution of large files
— Split file into chunks and blocks
— Parallelize and pipeline transfers

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 23.54

