
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 23  
 

Peer-to-Peer Systems"

April 18, 2011!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 23.2!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Three Capstone Lectures"
•  Peer-to-Peer systems (today)!

•  Client-Sever (Monday)!

•  Cloud computing (Wednesday, April 25)!
–  Invited lecture: Harry Li (Facebook) !

Lec 23.3!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

P2P Traffic"
•  2004: some Internet Service Providers (ISPs) claimed >

50% was p2p traffic!

Lec 23.4!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

P2P Traffic"
•  Today, around 20%!

•  Big chunk now is
video entertainment
(e.g., Netflix, iTunes)!

Page 2

Lec 23.5!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Peer-to-Peer Systems "
•  What problem does it try to solve?!

– Provide highly scalable, cost effective (i.e., free!)
services, e.g.,!

» Content distribution (e.g., Bittorrent)!
»  Internet telephony (e.g., Skype)!
»  Video streaming (e.g., Octoshape)!
» Computation (e.g., SETI@home)!

•  Key idea: leverage “free” resources of users (that use
the service), e.g.,!

– Network bandwidth!
– Storage!
– Computation!

Lec 23.6!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How Did it Start?"

•  A killer application: Napster (1999)!
– Free music over the Internet!

•  Use (home) user machines to store and distribute songs!

!

Internet!

Lec 23.7!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Model"
•  Each user stores a subset of files!
•  Each user has access (can download) files from all

users in the system!

A!
B!

C!

D!

E!
F!

Lec 23.8!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Main Challenge"
•  Find a “good” node storing a specified file!
•  By “good” we mean:!

– Has correct content!
– Can get content fast!
– …!

A!
B!

C!

D!

E!
F!

E?!

Page 3

Lec 23.9!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Other Challenges"
•  Scale: up to hundred of thousands or millions of

machines !
•  Dynamicity: machines can come and go at any time!

Lec 23.10!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Napster"
•  Implements a centralized lookup/directory service that maps

files (songs) to machines currently in the system!

•  How to find a file (song)?!
– Query the lookup service return a machine that stores the

required file!
» Ideally this is the closest/least-loaded machine!

– Download (ftp/http) the file!

•  Advantages: !
– Simplicity, easy to implement sophisticated search engines on

top of a centralized lookup service!
•  Disadvantages:!

– Robustness, scalability (?)!

Lec 23.11!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Napster: Example"
1)  A client (initiator) contacts directory service to get file “C”!
2)  Directory service returns a (possible) close by and lightly

loaded peer (m5) storing “C”!
3)  Client contacts directly m5 to get file “C” !

m3!
m4! m5! m6!

m7!
m8!

m9!

m2!

m1!

A"

B"

B"C"
C"
D"

A: m3"
B: m1, m7"
C: m5, m8"
D: m8"
…"

C?!

initiator!

m5!

C?!

C"

Directory !
service!

Lec 23.12!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

The Rise and Fall of Napster"
•  Founded by Shawn Fanning, John

Fanning, and Sean Parker!
•  Operated between June 1999 and July

2001!
– More than 26 million users (February

2001)!

•  Several high profile songs were leaked
before being released:!

– Metallicaʼs “I Disappear” demo song !
– Madonnaʼs “Music” single!

•  But, also helped made some bands
successful (e.g., Radiohead, Dispatch)!

•  (Reemerged as music store in 2008)!

(Source: http://en.wikipedia.org/wiki/
File:Napster_Unique_Users.svg)!

Page 4

Lec 23.13!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

The Aftermath"
•  “Recording Industry Association of America (RIAA)

Sues Music Startup Napster for $20 Billion” –
December 1999!

•  “Napster ordered to remove copyrighted material”
– March 2001!

•  Main legal argument: "
– Napster owns the lookup service, so it is directly

responsible for disseminating copyrighted material"

Lec 23.14!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella (2000)"
•  What problem does it try to solve?!

– Get around the legal vulnerabilities by getting rid of the
directory service!

•  Main idea: Flood the request to peers in the system
to find file!

Lec 23.15!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella (2000)"
•  How does request flooding work?!

– Send request to all neighbors!
– Neighbors recursively multicast the request!
– Eventually a machine that has the file receives the

request, and it sends back the answer!

•  Advantages:!
– Totally decentralized, highly robust!

•  Disadvantages:!
– Not scalable; the entire network can be swamped with

requests (to alleviate this problem, each request has a
TTL) !

Lec 23.16!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella: Time To Live (TTL)"

•  When the client (initiator) sends a request, it associates
a TTL with the request!

•  When a node forwards the request it decrements the
TTL!

•  When TTL reaches 0, the request is no longer forwarded!
•  Typically, Gnutella uses TTL = 7!

•  Example: TTL = 3!

TTL = 3! TTL = 2! TTL = 1! TTL = 0!

Stop forwarding !
request!

initiator!

Page 5

Lec 23.17!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella: Example"
•  Assume a client (initiator) asks for file “C”!
•  Assume TTL=2!

C"

C"A"

B"

B"

D"

initiator!

Lec 23.18!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella: Example"
•  Initiator send request to its neighbor(s)…!
•  … which recursively forward the request to their neighbors!
•  After 3 hops request is dropped!

C"

C"A"

B"

B"

D"

initiator!

C ?"

Lec 23.19!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella: Example"
•  If node has the requested file it sends a reply back !

– along the reverse path of the request, or!
– directly to initiator !

C"

C"A"

B"

B"

D"

initiator!

C ?"

m"
m"m"m"

Lec 23.20!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella: Example"
•  Initiator request file “C” from node “m”!

–  Initiator may pick one of several machines if receive multiple
replies!

– Typically uses HTTP to retrieve data!

C"

C"A"

B"

B"

D"

initiator!

C"

m"

Page 6

Lec 23.21!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Two-Level Hierarchy"
•  What problem does it try to solve?!

–  Inefficient search!

•  Main idea: organize the p2p system in a two level
hierarchy!

– Flooding happens only at the top level!

Lec 23.22!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Two-Level Hierarchy"
•  KaZaa, subsequent versions of Gnutella!
•  Leaf nodes are connected to a small number of ultrapeers

(supernodes)!

C"

A"

B" B"

D"

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

Leaf nodes

Ultrapeer
nodes

m1!

Lec 23.23!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Two-Level Hierarchy"
•  Each ultra-peer builds a director for the

content stored at its peers!

C"

A"

B" B"

D"

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

Leaf nodes

Ultrapeer
nodes

m1!

Lec 23.24!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella: Example"
•  Query: A leaf sends query to its ultrapeers!
•  If ultrapeer has requested content in its directory, the

ultrapeer replies immediately!

C"

A"

B" B"

D"

initiator!

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

m2"

B?"

Page 7

Lec 23.25!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Gnutella: Example"
•  Query: A leaf sends query to its ultrapeers!
•  If ultrapeer doesnʼt have content in its directory, the

ultrapeer floods other ultrapeers!

C"

A"

B" B"

D"

initiator!

C"

C"

D"B"

C"

m2! m3!
m4!

m7!

m8!

m10!

m11!

m13!m15!
m17!

B: m2, m3!
D: m4!
…!

B: m7!
D: m8!
…!

C: m10, m11!
…!

C: m13!
…!

A: m15!
C: m17!
…!

m15"

A?"

A
?"

A?"

m
15"

Lec 23.26!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example: Oct 2003 Crawl on Gnutella"

Ultrapeer nodes
Leaf nodes

Lec 23.27!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Distributed Hash Tables (DHTs)"
•  What problem does it solve?!

– Scalable, low-overhead lookup protocol!
– Guarantee a file is found if it is in the system!

•  Abstraction: a distributed hash-table data structure !
–  insert(id, item); !
–  item = query(id);!
– Note: item can be anything: a data object, document, file,

pointer to a file…!

•  Proposals!
– CAN, Chord, Kademlia, Pastry, Viceroy, Tapestry, etc!

! Lec 23.28!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

m1!

m2!
m3!

m4!

DHTs"
•  Partition hash table across nodes!

id1! item1!
id2! item2!
id5! item5!
id8! item8!
id9! item9!
id11! item11!
id13! item13!
id16! item16!
id18! item18!

Page 8

Lec 23.29!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

DHT: Insertion"
•  Call insert(id4, item14) at m1!

– Find node responsible for id4, i.e., node m3!
–  Insert (id14, item14) at m3 !

insert(id14, item14)!

id16! item16!
id18! item18!

id11! item11!
id13! item13!
id14! item14!

id5! item5!
id8! item8!
id9! item9!

id1! item1!
id2! item2!

m1!

m2!
m3!

m4!

Lec 23.30!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

DHT: Query"
•  Call query(id4) at m4!

– Find node responsible for id4, i.e., m3!
– Return (id14, item14) to m4 !

id16! item16!
id18! item18!

id11! item11!
id13! item13!
id14! item14!

id5! item5!
id8! item8!
id9! item9!

id1! item1!
id2! item2!

query(id14)!

item14!

m1!

m2!
m3!

m4!

Lec 23.31!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

DHT: Lookup Service"
•  Key primitive: lookup service!

– Given an ID, map it to a host!

•  Scalability: hundreds of thousands or millions of
machines !

•  One example: Chord (Lecture 15)!

•  Another example: CAN (next)!

Lec 23.32!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Content Addressable Network
(CAN)"

•  Associate to each node and item a unique id in an d-
dimensional space, e.g., torus!

•  Assigning d-dimensional ID to content (file):!
– Use d hash functions (i.e., h1(), h2(),.., hd()) to compute d

coordinates using name or content!
–  id = (id1, id2, …, idd), where idi = hi(content);!

•  Assigning d-dimensional ID to new node, nnew:!
1)  Pick random idnew!

2)  Find node n1 responsible for idnew!
3)  n1 may pick a new ID for nnew, idʼnew, to better split the ID

space!
!
!

Page 9

Lec 23.33!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

CAN Example: Two Dimensional
Space"

•  Space divided between nodes!
•  All nodes cover the entire space!
•  Each node covers either a square or a

rectangular area of ratios 1:2 or 2:1!
•  Example: !

–  Assume space size (8 x 8)!
–  Node n1:(1, 2) first node that joins

cover the entire space!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1"

Lec 23.34!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

CAN Example: Two Dimensional
Space"

•  Node n2:(4, 2) joins space is
divided between n1 and n2!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

Lec 23.35!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

CAN Example: Two Dimensional
Space"

•  Node n2:(4, 2) joins space is
divided between n1 and n2!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3"

Lec 23.36!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

CAN Example: Two Dimensional
Space"

•  Nodes n4:(5, 5) and n5:(6,6) join!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3" n4"
n5"

Page 10

Lec 23.37!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

CAN Example: Two Dimensional
Space"

•  Nodes: n1:(1, 2); n2:(4,2); n3:(3, 5);
n4:(5,5);n5:(6,6)!

•  Items: f1:(2,3); f2:(5,0); f3:(2,1); f4:
(7,5);!

1 2 3 4 5 6 7 0

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3" n4"
n5"

f1"

f2"

f3"

f4"

Lec 23.38!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

CAN Example: Two Dimensional
Space"

•  Each item is stored by the node
who owns its mapping in the
space !

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3" n4"
n5"

f1"

f2"

f3"

f4"

Lec 23.39!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

CAN: Query Example"

•  Each node knows its neighbors in the
d-space!

•  Forward query to the neighbor that is
closest to the query id!

•  Example: assume n1 queries f4!

1" 2" 3" 4" 5" 6" 7"0"

1"

2"

3"

4"

5"

6"

7"

0"

n1" n2"

n3" n4"
n5"

f1"

f2"

f3"

f4"

Lec 23.40!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Content Addressable Network
(CAN)"

•  Properties !
– Routing table size O(d), i.e., each node needs to know

about O(d) neighbors!
– Guarantees that a file is found in at most d*n1/d steps,

where n is the total number of nodes!
•  Example: grid with n node (d = 2)!

 !

n

n

Page 11

Lec 23.41!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

Lec 23.42!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

BitTorrent (2001): The Problem"

•  What problem does it try to solve?!
– Efficient distribution of large files (e.g., movies)!

•  Example:!
– Assume we want to distribute F=1GB file to 8 other

nodes!
– Assume all clients are identical and have uplink capacity

of C=1 Mbps!
– How long does it take to distribute the file using Napster/

Gnutella/Kazza? !

Lec 23.43!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Efficient Large File Distribution"

•  Step 1: copy file from m1m2!
– Duration: F/C = 1GB/1Mbps =

8,000sec !
!
!
!
•  Step 2: copy files from m1m3 and

m2m4!
– Duration: 8,000sec!

m1! m2! m3! m4!

m5! m6! m7! m8!

m1! m2! m3! m4!

m5! m6! m7! m8!

Lec 23.44!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Efficient Large File Distribution"

•  Step 3: copy files from m1m5
and m2m6, m3m7, m4m8!

– Duration: 8000sec!

•  Step k: by end of step k we
transfer file to 2k nodes!

m1! m2! m3! m4!

m5! m6! m7! m8!

Page 12

Lec 23.45!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Efficient Large File Distribution"

•  Total time to transfer file to N
machines:!

–  If N = 8 total distribution time =
24,000sec !

•  Can we do better?!

•  Yes!!
– Divide file into chunks!
– Pipeline chunk distribution!
!

m1! m2! m3! m4!

m5! m6! m7! m8!

logN!" #$%
F
C

Lec 23.46!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Efficient Large File Distribution"
•  Dive file into blocks of size B!
•  Use chain distribution!

m1! m2! m3! m4! m5! m6! m7! m8!
1" 2" 3" 4"…! 1"

1"

1"

1"

2"

2"

2"

3"

3"4"

file!

…!

Step 1"

Step 2"

Step 3"

Step 4"

Lec 23.47!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Efficient Large File Distribution"

!
•  Example: !

– File size: F=1GB!
– block size: B=1MB!
– # of nodes: N!
– Total time to distribute file: !

»  F/C + (N-1)*B/C =!
 = 1GB/1Mbps + (N-1)*1MB/1Mbps = 8,000sec + (N-1)*8sec!
»  If N = 8 Total distribution time = 8,056sec!

1"2"3"4"

…!
Step 4"1" 2" 3" 4"…!

file!

Lec 23.48!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

BitTorrent (2001)"

•  Allow fast downloads even when sources have low up-
link capacity!

•  How does it work?!
– Seed (origin) – site storing the file to be downloaded!
– Tracker – server maintaining the list of peers in system!
– Split each file into pieces (~ 256 KB each), and each

piece into sub-pieces (~ 16 KB each)!
– The loader loads one piece at a time!
– Within one piece, the loader can load up to five sub-

pieces in parallel"

Page 13

Lec 23.49!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

BitTorrent: Join Procedure"

Seed (origin!
server)!Tracker!

join"

peer "
List "
(m1,m2,m5)"

1)  Peer contacts tracker responsible for file it wants to
download!

2)  Tracker returns a list of peer (20-50) downloading same file!
3)  Peer connects to peers in the list!

m2!

m1!

m5!

m3!

m4! m7!

m6!

Lec 23.50!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

BitTorrent: Download Algorithm"

•  Download consists of three phases:!

•  Start: get a piece as soon as possible!
– Select a random piece !

•  Middle: spread all pieces as soon as possible!
– Select rarest piece next!

•  End: avoid getting stuck with a slow source, when
downloading the last sub-pieces!

– Request in parallel the same sub-piece!
– Cancel slowest downloads once a sub-piece has been

received !
!!

(For details see: http://bittorrent.org/bittorrentecon.pdf)!

Lec 23.51!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Bittorrent: Handling Freeriders"
•  Free riders: peers that use the network without

contributing (with the upstream bandwidth)!

•  Solution: chocking, a variant of Tit-for-Tat!
– Each peer has a limited number of upload slots!
– When a peer's upload bandwidth is saturated, it

exchanges upload bandwidth for download bandwidth!
–  If peer U downloads from peer C and doesnʼt upload in

return, C chokes download to U!

C

U

C

U

chock!

Lec 23.52!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Skype (2003)"

•  Peer-to-peer Internet
Telephony!

•  Two-level hierarchy (like
KaZaa)!

– Ultrapeers used to route
traffic between NATed end-
hosts…!

– … plus a login server to !
»  authenticate users!
»  ensure that names are

unique across network!

login server!

A!

B!

Messages!
exchanged!
to login server!

Data traffic!

(Note*: probable protocol; Skype !
protocol is not published)!

Page 14

Lec 23.53!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Skype (contʼd)"
•  Most powerful machine elected as a host and act as a mixer!
•  Example:!

– B elected as host/mixer!
– A and C sends their audio streams to B!
– B mixes the missing streams for A and C and sends mixed

stream to each of them!
•  Two-way call: 36 kb/s!
•  Three-way call: 54 kb/s!

A! C!

A!
C!

B+C!
A+B!

B!

Lec 23.54!4/18! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"

•  The key challenge of building wide area P2P systems is
a scalable and robust directory service!

•  Solutions covered in this lecture!
– Naptser: centralized location service!
– Gnutella: broadcast-based decentralized location service!
– CAN, Chord, Tapestry, Pastry: intelligent-routing

decentralized solution !
» Guarantee correctness!

•  Bittorrent: efficient distribution of large files!
– Split file into chunks and blocks!
– Parallelize and pipeline transfers!

