
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 21  
 

Security (I)"

April 11, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

21.2!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Goals for Today"
•  Conceptual understanding of how to make systems

secure!
•  Key security properties!

– Authentication !
– Data integrity !
– Confidentiality !
– Non-repudiation!

•  Cryptographic Mechanisms!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
and lecture notes by Kubiatowicz"

21.3!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

What is Computer Security Today?"

•  Computing in the presence of an adversary!!
– An adversary is the security fieldʼs defining

characteristic!
•  Reliability, robustness, and fault tolerance!

– Dealing with Mother Nature (random failures)!
•  Security!

– Dealing with actions of a knowledgeable attacker
dedicated to causing harm!

– Surviving malice, and not just mischance!
•  Wherever there is an adversary, there is a

computer security problem!!

21.4!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Protection vs Security"

•  Protection: one or more mechanisms for controlling the
access of programs, processes, or users to resources!

– Page table mechanism!
– Round-robin schedule!
– Data encryption!

•  Security: use of protection mechanisms to prevent misuse of
resources!

– Misuse defined with respect to policy!
»  E.g.: prevent exposure of certain sensitive information!
»  E.g.: prevent unauthorized modification/deletion of data!

– Requires consideration of the external environment within
which the system operates!

» Most well-constructed system cannot protect information if user
accidentally reveals password – social engineering challenge!

Page 2

21.5!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Preventing Misuse"
•  Types of Misuse:!

– Accidental:!
»  If I delete shell, canʼt log in to fix it!!
» Could make it more difficult by asking: “do you really want to

delete the shell?”!
–  Intentional:!

»  Some high school brat that transfers $3 billion from B to A!
» Criminal organization steals logon credentials via phishing attack!
» Doesnʼt help to ask if they want to do it (of course!)!

•  Three Pieces to Security!
– Authentication: who the user actually is!
– Authorization: who is allowed to do what!
– Enforcement: make sure people do only what they are

supposed to do!
•  Loopholes in any carefully constructed system:!

– Log in as superuser and youʼve circumvented authentication!
– Log in as self and can do anything with your resources; for

instance: run program that erases all of your files!
– Can you trust software to correctly enforce Authentication and

Authorization?!
21.6!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Analyze to Learn!"
•  Weʼre going spend study attackers and think

about how to break into systems!
– Why spread knowledge that will help bad guys be

more effective?!
•  To protect a system, you have to learn how it can

be attacked!
– Civil engineers learn what makes bridges fall

down so they can build bridges that last!
– Software engineering is similar!

•  Security is the same and different!!
– Why?!

21.7!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Challenges in Securing Systems"
•  Similar:!

– Analyze previous successful attacks!
•  But, deploy a new defense, they respond, you build a

better defense, they respond, you…!
– Need to find ways to anticipate kinds of attacks!

•  Different:!
– Attackers are intelligent (or some of them are)!
– Attacks will change and get better with time!
– Have to anticipate future attacks!

•  Security is like a game of chess!
– Except the attackers often get the last move!!

21.8!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Reality: Static Systems"
•  A deployed system is very hard to change!

– Serious consequences if attackers find a security
hole in a widely deployed system!

•  Goal: Predict in advance what attackers might do
and eliminate all security holes!

•  Reality: Have to think like an attacker!
•  Thinking like an attacker is not always easy!

– Can be fun to try to outwit the system!
– Or can be disconcerting to think about what could

go wrong and who could get hurt!
•  What if you donʼt anticipate attacks?!

– Analog cellular phones in the 80ʼs and 90ʼs!

Page 3

21.9!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Real-World Example: Analog Cellular"
•  1970ʼs: analog cellular had no security!

– Phones transmit ID/billing info in the clear!
– Assumption: attackers wouldnʼt bother to

assemble equipment to intercept info…!
•  Attackers built “black boxes” to intercept and

clone phones for fraudulent calling!
– Whereʼs the best place to intercept?!
– Cellular operators completely unprepared !

•  Early 90ʼs, US carriers losing >$1B/yr!
– 70% of LD cellular calls placed from downtown

Oakland on Fri nights fraudulent!
•  Problems: huge capital investment/debt, 5–10

yrs & huge replacement cost!
21.10!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Lesson Learned"
•  Failing to anticipate types of attacks, or

underestimating the threat, can be costly!
•  Security design requires studying attacks!

– Security experts spend a lot of time trying to
come up with new attacks!

– Sounds counter-productive (why help the
attackers?), but it is better to learn about
vulnerabilities before the system is deployed
than after!

•  If you know about the possible attacks in
advance, you can design a system to resist
those attacks!
– But, anything else is a toss of the dice…!

21.11!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

A Process for Security Evaluation"
•  How do we think about the ways that an

adversary might use to penetrate system
security or otherwise cause mischief?!

•  We need a framework to help you think through
these issues!

•  Start with security requirements or in other
words:!
– What properties do we want the system to have,

even when it is under attack? !
– What are we trying to protect from the attacker?!
– Or, to look at it the other way around, what are

we trying to prevent?!

21.12!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Security Requirements"

•  Authentication !
–  Ensures that a user is who is claiming to be!

•  Data integrity !
–  Ensure that data is not changed from source to destination or after

being written on a storage device !

•  Confidentiality !
–  Ensures that data is read only by authorized users!

•  Non-repudiation!
–  Sender/client canʼt later claim didnʼt send/write data!
– Receiver/server canʼt claim didnʼt receive/write data!

!

Page 4

21.13!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Securing Communication: Cryptography "
•  Cryptography: communication in the presence of

adversaries!

•  Studied for thousands of years!
– See the Simon Singhʼs The Code Book for an excellent,

highly readable history!

•  Central goal: confidentiality!
– How to encode information so that an adversary canʼt

extract it, but a friend can!

•  General premise: there is a key, possession of which
allows decoding, but without which decoding is infeasible!

– Thus, key must be kept secret and not guessable!
21.14!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Using Symmetric Keys "

•  Same key for encryption and decryption!

Internet!Encrypt with!
secret key!

Decrypt with!
secret key!

Plaintext (m)! m!

Ciphertext!

21.15!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Symmetric Keys"
•  Can just XOR plaintext with the key!

– Easy to implement, but easy to break using frequency analysis!
– Unbreakable alternative: XOR with one-time pad!

•  More sophisticated (e.g., block cipher) algorithms !
– Works with a block size (e.g., 64 bits)!

»  To encrypt a stream, can encrypt blocks separately, or link them!

21.16!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Authentication via Secret Key"
•  Main idea: entity proves identity by decrypting a secret

encrypted with its own key!
– K – secret key shared only by A and B!

•  A can asks B to authenticate itself by decrypting a nonce,
i.e., random value, x!

– Avoid replay attacks (attacker impersonating client or server)!
•  Vulnerable to man-in-the middle attack!

E(x, K)

x

A B

Notation: E(m,k) –
encrypt message m
with key k!
!

Page 5

21.17!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Symmetric Key Ciphers - DES & AES"

•  Data Encryption Standard (DES)!
– Developed by IBM in 1970s, standardized by NBS/NIST!
– 56-bit key (decreased from 64 bits at NSAʼs request)!
– Still fairly strong other than brute-forcing the key space!

»  But custom hardware can crack a key in < 24 hours!
– Today many financial institutions use Triple DES!

= DES applied 3 times, with 3 keys totaling 168 bits!
•  Advanced Encryption Standard (AES)!

•  Replacement for DES standardized in 2002!
•  Key size: 128, 192 or 256 bits!

•  How fundamentally strong are they?!
•  No one knows (no proofs exist)!

21.18!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Integrity: Cryptographic Hashes"

•  Basic building block for integrity: hashing!
– Associate hash with byte-stream, receiver verifies match!

»  Assures data hasnʼt been modified, either accidentally – or
maliciously!

•  Approach: !
-  Sender computes a digest of message m, i.e., H(m)!

» H() is a publicly known hash function!
-  Send digest (d = H(m)) to receiver in a secure way, e.g.,!

» Using another physical channel!
» Using encryption !

-  Upon receiving m and d, receiver re-computes H(m) to see
whether result agrees with d!

21.19!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Using Hashing for Integrity"

Internet!Digest!
H(m)!

plaintext (m)!

digest!

Digest!
H(m)!
!

=!

digestʼ!

NO!
corrupted msg! m!

21.20!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Standard Cryptographic Hash Functions"
•  MD5 (Message Digest version 5)!

– Developed in 1991 (Rivest)!
– Produces 128 bit hashes!
– Widely used (RFC 1321)!
– Broken (1996-2008): Attacks that find collisions!

•  SHA-1 (Secure Hash Algorithm)!
– Developed by NSA in 1995 as successor to MD5!
– Produces 160 bit hashes!
– Widely used (SSL/TLS, SSH, PGP, IPSEC)!
– Broken in 2005, government use discontinued in 2010!

•  SHA-2 (2001) !
– Family of SHA-224, SHA-256, SHA-384, SHA-512 !

Page 6

21.21!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Asymmetric Encryption (Public Key)"

•  Idea: use two different keys, one to encrypt (e) and one to
decrypt (d)!

– A key pair!

•  Crucial property: knowing e does not give away d!

•  Therefore e can be public: everyone knows it!!

•  If Alice wants to send to Bob, she fetches Bobʼs public key
(say from Bobʼs home page) and encrypts with it!

– Alice canʼt decrypt what sheʼs sending to Bob …!
– … but then, neither can anyone else (except Bob)!

21.22!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Public Key / Asymmetric Encryption"
•  Sender uses receiverʼs public key!

– Advertised to everyone!
•  Receiver uses complementary private key!

– Must be kept secret!

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

21.23!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Public Key Cryptography"

•  Invented in the 1970s!
– Revolutionized cryptography!
–  (Was actually invented earlier by British intelligence)!

•  How can we construct an encryption/decryption algorithm
using a key pair with the public/private properties? !

– Answer: Number Theory!

•  Most fully developed approach: RSA!
– Rivest / Shamir / Adleman, 1977; RFC 3447!
– Based on modular multiplication of very large integers!
– Very widely used (e.g., ssh, SSL/TLS for https)!

21.24!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Properties of RSA"
•  Requires generating large, random prime numbers!

–  Algorithms exist for quickly finding these (probabilistic!)!

•  Requires exponentiating very large numbers!
–  Again, fairly fast algorithms exist!

•  Overall, much slower than symmetric key crypto!
– One general strategy: use public key crypto to exchange a (short)

symmetric session key !
»  Use that key then with AES or such!

•  How difficult is recovering d, the private key? !
–  Equivalent to finding prime factors of a large number

»  Many have tried - believed to be very hard (= brute force only)!
»  (Though quantum computers can do so in polynomial time!)!

Page 7

21.25!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Simple Public Key Authentication"
•  Each side need only to know the

other sideʼs public key!
– No secret key need be shared!

•  A encrypts a nonce (random
number) x!

– Avoid replay attacks, e.g.,
attacker impersonating client
or server!

•  B proves it can recover x!

•  A can authenticate itself to B in
the same way!

E(x, PublicB)

x

A B

Notation: E(m,k) –
encrypt message m
with key k!
!

21.26!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Administrivia"
•  Project 4 will be posted by Friday!

– Extends project 3 with replication and encryption using
multiple servers and coordinated updates using 2PC!

– Design document due Mon 4/23 at 11:59PM!
– Code due Thu 5/3 at 11:59PM!

21.27!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

21.28!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Non-Repudiation: RSA Crypto & Signatures"

•  Suppose Alice has published public key KE!

•  If she wishes to prove who she is, she can send a
message x encrypted with her private key KD (i.e.,
she sends E(x, KD))!

– Anyone knowing Aliceʼs public key KE can recover x, verify
that Alice must have sent the message!

» It provides a signature!
– Alice canʼt deny it ⇒ non-repudiation!

Page 8

21.29!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

RSA Crypto & Signatures (contʼd)"

I will pay
Bob $500"

I will pay
Bob $500"

21.30!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Digital Certificates"

•  How do you know KE is Aliceʼs public key?!

•  Trusted authority (e.g., Verisign) signs binding between Alice
and KE with its private key KVprivate!

– C = E({Alice, KE}, KVprivate)!
– C: digital certificate !

•  Alice: distribute her digital certificate, C!

•  Anyone: use trusted authorityʼs KVpublic, to extract Aliceʼs
public key from C!

–  {Alice, KE} = D(C, KVpublic)!

!

21.31!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary of Our Crypto Toolkit"
•  If we can securely distribute a key, then!

– Symmetric ciphers (e.g., AES) offer fast, presumably
strong confidentiality!

•  Public key cryptography does away with (potentially major)
problem of secure key distribution!

– But: not as computationally efficient!
» Often addressed by using public key crypto to

exchange a session key!

•  Digital signature binds the public key to an entity!

21.32!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Putting It All Together - HTTPS!
•  What happens when you click on
https://www.amazon.com?!

•  https = “Use HTTP over SSL/TLS”!
– SSL = Secure Socket Layer!
– TSL = Transport Layer Security!

»  Successor to SSL!
– Provides security layer (authentication, encryption) on

top of TCP!
»  Fairly transparent to applications!

Page 9

21.33!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

HTTPS Connection (SSL/TLS) (contʼd)"
•  Browser (client) connects via

TCP to Amazonʼs HTTPS
server!

•  Client sends over list of
crypto protocols it supports!

•  Server picks protocols to use
for this session!

•  Server sends over its
certificate!

•  (all of this is in the clear)!

Browser! Amazon!

Hello. I support!
(TLS+RSA+AES128+SHA2) or!

(SSL+RSA+3DES+MD5)

or …!
Letʼs use!

TLS+RSA

+AES128+SHA2"

Hereʼs my cert"

~1 KB of data"

21.34!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Inside the Serverʼs Certificate"

•  Name associated with cert (e.g., Amazon)!
•  Amazonʼs RSA public key!
•  A bunch of auxiliary info (physical address, type of cert,

expiration time)!
•  Name of certificateʼs signatory (who signed it)!
•  A public-key signature of a hash (SHA-256) of all this!

– Constructed using the signatoryʼs private RSA key, i.e.,!
– Cert = E(HSHA256(KApublic, www.amazon.com, …), KSprivate))!

»  KApublic: Amazon’s public key!
»  KSprivate: signatory (certificate authority) public key !

•  …!

21.35!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Validating Amazonʼs Identity"
•  How does the browser authenticate certificate signatory?!

– Certificates of several certificate authorities (e.g., Verisign)
are hardwired into the browser (or OS)!

•  If it canʼt find the cert, then warns the user that site has not
been verified!

– And may ask whether to continue!
– Note, can still proceed, just without authentication!

•  Browser uses public key in signatoryʼs cert to decrypt
signature!

– Compares with its own SHA-256 hash of Amazonʼs cert!
•  Assuming signature matches, now have high confidence

itʼs indeed Amazon …!
– … assuming signatory is trustworthy!
– DigiNotar CA breach (July-Sept 2011): Google, Yahoo!,

Mozilla, Tor project, Wordpress, … (531 total certificates)!
21.36!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Certificate Validation"

E(HSHA256(KApublic, www.amazon.com, …), KSprivate)), !
www.amazon.com, KApublic, KSpublic, …!

HSHA256(KApublic, www.amazon.com, …)!

E(HSHA256(…), KSpublic))!
(recall, KSpublic hardwired)!

=!

Yes!

Validation successful!

Validation failed!
No!

HSHA256(KApublic, www.amazon.com, …)!

HSHA256(…)!

Certificate!

Page 10

21.37!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  Browser constructs a random
session key K used for data
communication!

–  Private key for bulk crypto!
•  Browser encrypts K using

Amazonʼs public key!
•  Browser sends E(K, KApublic) to

server!
•  Browser displays!
•  All subsequent comm.

encrypted w/ symmetric cipher
(e.g., AES128) using key K!

–  E.g., client can authenticate using
a password!

Browser! Amazon!

Hereʼs my cert"

~1 KB of data"

E(K, KApublic)!
K"

E(password …, K)!

E(response …, K)!

Agreed!

HTTPS Connection (SSL/TLS) contʼd"

K"

21.38!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Authentication: Passwords"
•  Shared secret between two parties!

•  Since only user knows password, someone types
correct password ⇒ must be user typing it!

•  Very common technique!

•  System must keep copy of secret to  
check against passwords!

– What if malicious user gains access to list  
of passwords?!

» Need to obscure information somehow!
– Mechanism: utilize a transformation that is difficult to

reverse without the right key (e.g. encryption)!

21.39!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Passwords: Secrecy"

•  Example: UNIX /etc/passwd file!
– passwd→one way transform(hash)→encrypted passwd!
– System stores only encrypted version, so OK even if

someone reads the file!!
– When you type in your password, system compares

encrypted version!

“eggplant”

21.40!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Passwords: How easy to guess?"
•  Three common ways of compromising passwords!
•  Password Guessing: !

– Often people use obvious information like birthday, favorite
color, girlfriendʼs name, etc…!

– Trivia question 1: what is the most popular password?!
– Trivia question 2: what is the next most popular password?!
– Answer: (from 32 million stolen passwords– Rockyou 2010)

http://www.nytimes.com/2010/01/21/technology/
21password.html !

•  Dictionary Attack (against stolen encrypted list): !
– Work way through dictionary and compare encrypted version of

dictionary words with entries in /etc/passwd
– http://www.skullsecurity.org/wiki/index.php/Passwords !

•  Dumpster Diving:!
– Find pieces of paper with passwords written on them!
–  (Also used to get social-security numbers, etc.)!

Page 11

21.41!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Passwords: How easy to guess? (contʼd)"

•  Paradox: !
– Short passwords are easy to crack!
– Long ones, people write down!!

•  Technology means we have to use longer passwords!
– UNIX initially required lowercase, 5-letter passwords: total of

265=10million passwords!
»  In 1975, 10ms to check a password→1 day to crack!
»  In 2005, .01μs to check a password→0.1 seconds to crack!

– Takes less time to check for all words in the dictionary!!

21.42!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Passwords: Making harder to crack"
•  Canʼt make it impossible to crack, but can make it harder!
•  Technique 1: Extend everyoneʼs password with a unique

number (“Salt” – stored in password file)!
– Early UNIX uses 12-bit “salt” èdictionary attacks 4096x harder!
– Without salt, could pre-compute all the words in the dictionary

hashed with UNIX algorithm (modern salts are 48-128 bits)!

•  Technique 2: Require more complex passwords!
– Make people use at least 8-character passwords with upper-

case, lower-case, and numbers!
»  708=6x1014=6million seconds=69 days@0.01μs/check!

– Unfortunately, people still pick common patterns!
»  e.g. Capitalize first letter of common word, add one digit!

•  Technique 3: Delay checking of passwords!
–  If attacker doesnʼt have access to /etc/passwd, delay every

remote login attempt by 1 second!
– Makes it infeasible for rapid-fire dictionary attack!

21.43!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Passwords: Making harder to crack (contʼd)"
•  Technique 4: Assign very long passwords/passphrases!

– Can have more entropy (randomness→harder to crack)!
– Embed password in a smart card (or ATM card)!

» Requires physical theft to steal password!
» Can require PIN from user before authenticates self!

– Better: have smartcard generate pseudorandom number!
» Client and server share initial seed!
»  Each second/login attempt advances random number!

•  Technique 5: “Zero-Knowledge Proof”!
– Require a series of challenge-response questions!

» Distribute secret algorithm to user!
»  Server presents number; user computes something from number;

returns answer to server; server never asks same “question” twice!
– Often performed by smartcard plugged into system!

•  Technique 6: Replace password with Biometrics!
– Use of one or more intrinsic physical or  

behavioral traits to identify someone!
– Examples: fingerprint reader, palm reader, retinal scan!

21.44!4/11/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Conclusion"
•  Distributed identity: Use cryptography!
•  Symmetrical (or Private Key) Encryption!

– Single Key used to encode and decode!
– Introduces key-distribution problem!

•  Public-Key Encryption!
– Two keys: a public key and a private key!
– Slower than private key, but simplifies key-distribution!

•  Secure Hash Function!
– Used to summarize data!
– Hard to find another block of data with same hash!

•  Passwords!
– Encrypt them to help hid them!
– Force them to be longer/not amenable to dictionary attack!
– Use zero-knowledge request-response techniques!

