CS162 Operating Systems and Systems Programming Lecture 21

Security (I)

April 11, 2012 Anthony D. Joseph and Ion Stoica http://inst.eecs.berkeley.edu/~cs162

Goals for Today

- Conceptual understanding of how to make systems secure
- Key security properties
 - Authentication
 - Data integrity
 - Confidentiality
 - Non-repudiation
- Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne, and lecture notes by Kubiatowicz

4/11/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012

162 ©UCB Spring 2012

21.2

What is Computer Security Today?

- Computing in the presence of an adversary!
 - An adversary is the security field's defining characteristic
- Reliability, robustness, and fault tolerance
 - -Dealing with Mother Nature (random failures)
- Security
 - Dealing with actions of a knowledgeable attacker dedicated to causing harm
 - -Surviving malice, and not just mischance
- Wherever there is an adversary, there is a computer security problem!

4/11/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012

Protection vs Security Protection: one or more mechanisms for controlling the access of programs, processes, or users to resources - Page table mechanism - Round-robin schedule - Data encryption Security: use of protection mechanisms to prevent misuse of resources - Misuse defined with respect to policy » E.g.: prevent exposure of certain sensitive information » E.g.: prevent unauthorized modification/deletion of data - Requires consideration of the external environment within which the system operates » Most well-constructed system cannot protect information if user accidentally reveals password - social engineering challenge 4/11/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012 21.4

21.3

	Preventing Misuse	
Types of	Misuse:	
– Accide	ntal:	
» If I	delete shell, can't log in to fix it!	
» Co del	uld make it more difficult by asking: "do you really w ete the shell?"	ant to
 Intention 	onal:	
» Soi » Crii » Doi	ne high school brat that transfers \$3 billion from B t ninal organization steals logon credentials via phish esn't help to ask if they want to do it (of course!)	o A ning attack
 Three Pie 	eces to Security	
 Auther 	tication: who the user actually is	
 Author 	ization; who is allowed to do what	
- Enforc suppos	ement: make sure people do only what they are sed to do	e
 Loophole Log in Log in 	s in any carefully constructed system: as superuser and you've circumvented authen	tication
instand – Can yo – Author	the set and can do anything with your resource the run program that erases all of your files bu trust software to correctly enforce Authentica ization?	ation and
4/11/2012	Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012	21.5

Analyze to Learn!

- We're going spend study attackers and think about how to break into systems
 - Why spread knowledge that will help bad guys be more effective?
- To protect a system, you have to learn how it can be attacked
 - Civil engineers learn what makes bridges fall down so they can build bridges that last
 - -Software engineering is similar
- Security is the same and different! –Why?

4/11/2012

4/11/2012

Challenges in Securing Systems

• Similar:

-Analyze previous successful attacks

- But, deploy a new defense, they respond, you build a better defense, they respond, you...
 - -Need to find ways to anticipate kinds of attacks
- · Different:

4/11/2012

- -Attackers are intelligent (or some of them are)
- -Attacks will change and get better with time
- -Have to anticipate future attacks
- Security is like a game of chess
 - -Except the attackers often get the last move!

Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012

Reality: Static Systems

Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012

21.6

21.8

- · A deployed system is very hard to change
 - -Serious consequences if attackers find a security hole in a widely deployed system
- Goal: Predict *in advance* what attackers might do and eliminate all security holes
- · Reality: Have to think like an attacker
- · Thinking like an attacker is not always easy
 - -Can be fun to try to outwit the system
 - Or can be disconcerting to think about what could go wrong and who could get hurt
- · What if you don't anticipate attacks?
- -Analog cellular phones in the 80's and 90's
 - Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012

21.7

- · Failing to anticipate types of attacks, or underestimating the threat, can be costly
- Security design requires studying attacks
 - -Security experts spend a lot of time trying to come up with new attacks
 - -Sounds counter-productive (why help the attackers?), but it is better to learn about vulnerabilities before the system is deployed than after
- · If you know about the possible attacks in advance, you can design a system to resist those attacks

-But, anything else is a toss of the dice... 4/11/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012

21.10

A Process for Security Evaluation

- How do we think about the ways that an adversary might use to penetrate system security or otherwise cause mischief?
- We need a framework to help you think through these issues
- Start with *security requirements* or in other words:
 - -What properties do we want the system to have, even when it is under attack?
 - -What are we trying to protect from the attacker?
 - -Or, to look at it the other way around, what are we trying to prevent?

Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012

4/11/2012

Security Requirements

- Authentication
 - Ensures that a user is who is claiming to be
- Data integrity
 - Ensure that data is not changed from source to destination or after being written on a storage device
- Confidentiality
 - Ensures that data is read only by authorized users
- · Non-repudiation
 - Sender/client can't later claim didn't send/write data
 - Receiver/server can't claim didn't receive/write data
- 4/11/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012 21.12

21.11

Public Key / Asymmetric Encryption

- Sender uses receiver's public key

 Advertised to everyone
- Receiver uses complementary private key
 Must be kept secret

21.24

Public Key Cryptography **Properties of RSA** Requires generating large, random prime numbers Invented in the 1970s - Algorithms exist for guickly finding these (probabilistic!) - Revolutionized cryptography - (Was actually invented earlier by British intelligence) Requires exponentiating very large numbers - Again, fairly fast algorithms exist How can we construct an encryption/decryption algorithm using a key pair with the public/private properties? Overall, much slower than symmetric key crypto - Answer: Number Theory - One general strategy: use public key crypto to exchange a (short) symmetric session key » Use that key then with AES or such Most fully developed approach: RSA - Rivest / Shamir / Adleman, 1977; RFC 3447 How difficult is recovering d, the private key? - Based on modular multiplication of very large integers - Equivalent to finding prime factors of a large number - Very widely used (e.g., ssh, SSL/TLS for https) » Many have tried - believed to be very hard (= brute force only) » (Though quantum computers can do so in polynomial time!) 4/11/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012 21.23 4/11/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012

Conclusion

- Distributed identity: Use cryptography
- Symmetrical (or Private Key) Encryption
- Single Key used to encode and decode
- Introduces key-distribution problem
- Public-Key Encryption
 - Two keys: a public key and a private key
 - Slower than private key, but simplifies key-distribution
- Secure Hash Function
 - Used to summarize data
 - Hard to find another block of data with same hash
- Passwords
 - Encrypt them to help hid them
 - Force them to be longer/not amenable to dictionary attack
 - Use zero-knowledge request-response techniques

```
4/11/2012 Anthony D. Joseph an
```

Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012 21.44