CS162
Operating Systems and
Systems Programming

Lecture 21

Security (I)

April 11,2012
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

What is Computer Security Today?

Computing in the presence of an adversary!

—An adversary is the security field’s defining
characteristic

Reliability, robustness, and fault tolerance
—Dealing with Mother Nature (random failures)
Security

—Dealing with actions of a knowledgeable attacker
dedicated to causing harm

—Surviving malice, and not just mischance

Wherever there is an adversary, there is a
computer security problem!

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.3

Page 1

Goals for Today

+ Conceptual understanding of how to make systems
secure

+ Key security properties
— Authentication
— Data integrity
— Confidentiality
— Non-repudiation
+ Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne,
and lecture notes by Kubiatowicz

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.2

Protection vs Security

+ Protection: one or more mechanisms for controlling the
access of programs, processes, or users to resources
— Page table mechanism
— Round-robin schedule
— Data encryption

+ Security: use of protection mechanisms to prevent misuse of
resources

— Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

— Requires consideration of the external environment within

which the system operates
» Most well-constructed system cannot protect information if user
accidentally reveals password — social engineering challenge

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.4

Preventing Misuse

+ Types of Misuse:
— Accidental:
» If | delete shell, can’t log in to fix it!
» Could make it more difficult by asking: “do you really want to
delete the shell?”
— Intentional:
» Some high school brat that transfers $3 billion from B to A
» Criminal organization steals logon credentials via phishing attack
» Doesn’t help to ask if they want to do it (of course!)
+ Three Pieces to Security
— Authentication: who the user actually is
— Authorization: who is allowed to do what
— Enforcement: make sure people do only what they are
supposed to do
+ Loopholes in any carefully constructed system:
— Log in as superuser and you’ve circumvented authentication
— Log in as self and can do anything with your resources; for
instance: run program that erases all of your files
— Can you trust software to correctly enforce Authentication and
Authorization?

4/11/2012

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 215

Challenges in Securing Systems

+ Similar:
—Analyze previous successful attacks

+ But, deploy a new defense, they respond, you build a
better defense, they respond, you...

—Need to find ways to anticipate kinds of attacks
+ Different:
— Attackers are intelligent (or some of them are)
—Attacks will change and get better with time
—Have to anticipate future attacks
+ Security is like a game of chess
—Except the attackers often get the last move!

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.7

Page 2

Analyze to Learn!

+ We’re going spend study attackers and think
about how to break into systems

—Why spread knowledge that will help bad guys be
more effective?

+ To protect a system, you have to learn how it can
be attacked

—Civil engineers learn what makes bridges fall
down so they can build bridges that last

—Software engineering is similar
+ Security is the same and different!
—Why?

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.6

Reality: Static Systems

+ A deployed system is very hard to change

—Serious consequences if attackers find a security
hole in a widely deployed system

+ Goal: Predict in advance what attackers might do
and eliminate all security holes

+ Reality: Have to think like an attacker
+ Thinking like an attacker is not always easy
—Can be fun to try to outwit the system

—Or can be disconcerting to think about what could
go wrong and who could get hurt

+ What if you don’t anticipate attacks?
—Analog cellular phones in the 80’s and 90’s

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.8

Real-World Example: Analog Cellular
+ 1970’s: analog cellular had no security
—Phones transmit ID/billing info in the clear

—Assumption: attackers wouldn’t bother to
assemble equipment to intercept info...

- Attackers built “black boxes” to intercept and
clone phones for fraudulent calling

—Where’s the best place to intercept?
—Cellular operators completely unprepared
« Early 90’s, US carriers losing >$1B/yr

—70% of LD cellular calls placed from downtown
Oakland on Fri nights fraudulent

* Problems: huge capital investment/debt, 5-10
yrs & huge replacement cost

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.9

A Process for Security Evaluation

* How do we think about the ways that an
adversary might use to penetrate system
security or otherwise cause mischief?

+ We need a framework to help you think through
these issues

« Start with security requirements or in other
words:

—What properties do we want the system to have,
even when it is under attack?

—What are we trying to protect from the attacker?
—Or, to look at it the other way around, what are
we trying to prevent?

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.11

Page 3

Lesson Learned

+ Failing to anticipate types of attacks, or
underestimating the threat, can be costly

+ Security design requires studying attacks

—Security experts spend a lot of time trying to
come up with new attacks

—Sounds counter-productive (why help the
attackers?), but it is better to learn about
vulnerabilities before the system is deployed
than after

+ If you know about the possible attacks in
advance, you can design a system to resist
those attacks

—But, anything else is a toss of the dice...

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.10

Security Requirements

+ Authentication
— Ensures that a user is who is claiming to be

+ Data integrity
— Ensure that data is not changed from source to destination or after
being written on a storage device

+ Confidentiality
— Ensures that data is read only by authorized users

+ Non-repudiation
— Sender/client can't later claim didn’t send/write data
— Receiver/server can't claim didn’t receive/write data

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.12

Securing Communication: Cryptography

« Cryptography: communication in the presence of
adversaries

+ Studied for thousands of years
— See the Simon Singh’s The Code Book for an excellent,
highly readable history

+ Central goal: confidentiality

— How to encode information so that an adversary can’t
extract it, but a friend can

+ General premise: there is a key, possession of which
allows decoding, but without which decoding is infeasible

— Thus, key must be kept secret and not guessable

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.13

Symmetric Keys
+ Can just XOR plaintext with the key
— Easy to implement, but easy to break using frequency analysis
— Unbreakable alternative: XOR with one-time pad
+ More sophisticated (e.g., block cipher) algorithms

— Works with a block size (e.g., 64 bits)
» To encrypt a stream, can encrypt blocks separately, or link them

Plaintext Ciphertext
[ITTTIII] EI:I?:D
Block Cipher Block Cipher
Key —=| Encryption Key —=| Decryption
S rhe (LI}
Ciphertext Plaintext
4/ R s stoica CS162 ©UCB Spring 2012 21.15

Page 4

Using Symmetric Keys

+ Same key for encryption and decryption

Plaintext (m)

Encrypt with Internet Decrypt with
secret key secret key
Ciphertext
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.14

Authentication via Secret Key

+ Main idea: entity proves identity by decrypting a secret
encrypted with its own key

— K — secret key shared only by A and B
+ A can asks B to authenticate itself by decrypting a nonce,
i.e., random value, x
— Avoid replay attacks (attacker impersonating client or server)
» Vulnerable to man-in-the middle attack

A B
Ex, k
Notation: E(m,k) —
encrypt message m
with key k
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.16

Svymmetric Key Ciphers - DES & AES

+ Data Encryption Standard (DES)
— Developed by IBM in 1970s, standardized by NBS/NIST
— 56-bit key (decreased from 64 bits at NSA’s request)
— Still fairly strong other than brute-forcing the key space
» But custom hardware can crack a key in <24 hours
— Today many financial institutions use Triple DES
= DES applied 3 times, with 3 keys totaling 168 bits
« Advanced Encryption Standard (AES)
* Replacement for DES standardized in 2002
» Key size: 128, 192 or 256 bits
¢ How fundamentally strong are they?
¢ No one knows (no proofs exist)

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.17

Using Hashing for Integrity

corrupted msg m

plajntext (m)
NO
digest’
% Internet
digest
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.19

Page 5

Integrity: Cryptographic Hashes

+ Basic building block for integrity: hashing

— Associate hash with byte-stream, receiver verifies match
» Assures data hasn’t been modified, either accidentally — or

maliciously
» Approach:
- Sender computes a digest of message m, i.e., H(m)
» H() is a publicly known hash function

- Send digest (d = H(m)) to receiver in a secure way, e.g.,

» Using another physical channel
» Using encryption

- Upon receiving m and d, receiver re-computes H(m) to see

whether result agrees with d

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

21.18

Standard Cryptographic Hash Functions

+ MD5 (Message Digest version 5)
— Developed in 1991 (Rivest)
— Produces 128 bit hashes
— Widely used (RFC 1321)
— Broken (1996-2008): Attacks that find collisions

+ SHA-1 (Secure Hash Algorithm)
— Developed by NSA in 1995 as successor to MD5
— Produces 160 bit hashes
— Widely used (SSL/TLS, SSH, PGP, IPSEC)
— Broken in 2005, government use discontinued in 2010

- SHA-2 (2001)
— Family of SHA-224, SHA-256, SHA-384, SHA-512

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

21.20

Asymmetric Encryption (Public Key)

+ ldea: use two different keys, one to encrypt (€) and one to
decrypt (d)
— A key pair

+ Crucial property: knowing e does not give away d
+ Therefore e can be public: everyone knows it!

+ If Alice wants to send to Bob, she fetches Bob’s public key
(say from Bob’s home page) and encrypts with it

— Alice can’t decrypt what she’s sending to Bob ...
— ... but then, neither can anyone else (except Bob)

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.21

Public Key Cryptography

+ Invented in the 1970s
— Revolutionized cryptography
— (Was actually invented earlier by British intelligence)

+ How can we construct an encryption/decryption algorithm
using a key pair with the public/private properties?
— Answer: Number Theory

+ Most fully developed approach: RSA
— Rivest / Shamir / Adleman, 1977; RFC 3447
— Based on modular multiplication of very large integers
— Very widely used (e.g., ssh, SSL/TLS for https)

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.23

Page 6

Public Key / Asymmetric Encryption

+ Sender uses receiver’s public key
— Advertised to everyone

+ Receiver uses complementary private key
— Must be kept secret

Plaintext Plaintext

Internet
Encrypt with Decrypt with
public key private key
Ciphertext
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.22

4/11/2012

Properties of RSA

Requires generating large, random prime numbers
— Algorithms exist for quickly finding these (probabilistic!)

Requires exponentiating very large numbers
— Again, fairly fast algorithms exist

Overall, much slower than symmetric key crypto
— One general strategy: use public key crypto to exchange a (short)
symmetric session key
» Use that key then with AES or such

How difficult is recovering d, the private key?
— Equivalent to finding prime factors of a large number
» Many have tried - believed to be very hard (= brute force only)

» (Though quantum computers can do so in polynomial time!)
Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.24

Simple Public Key Authentication

+ Each side need only to know the
other side’s public key

— No secret key need be shared

>
oY)

£, Pupjie
+ A encrypts a nonce (random
number) x

—Avoid replay attacks, e.g.,
attacker impersonating client
or server

Notation: E(m,k) —
encrypt message m

» B proves it can recover x

))) with key k
+ A can authenticate itself to B in
the same way
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.25
5min Break
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.27

Page 7

Administrivia

* Project 4 will be posted by Friday

— Extends project 3 with replication and encryption using
multiple servers and coordinated updates using 2PC

— Design document due Mon 4/23 at 11:59PM
— Code due Thu 5/3 at 11:59PM

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.26

Non-Repudiation: RSA Crypto & Signatures

+ Suppose Alice has published public key K¢

+ If she wishes to prove who she is, she can send a
message x encrypted with her private key K (i.e.,
she sends E(x, Kp))

—Anyone knowing Alice’s public key K¢ can recover x, verify
that Alice must have sent the message

» |t provides a signature
—Alice can’t deny it = non-repudiation

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.28

RSA Crypto & Signatures (cont’d)

Alice

1 will pay Sign ‘/h
Bob $500 > (Encrypt)

* Alice's

private key
DFCD3454
BBEA788A
Bob +
1 will pay Verify A/h
|
Bob $500 (Decrypt) Alice's
public key
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.29

Summary of Our Crypto Toolkit

+ If we can securely distribute a key, then

— Symmetric ciphers (e.g., AES) offer fast, presumably
strong confidentiality

+ Public key cryptography does away with (potentially major)
problem of secure key distribution

—But: not as computationally efficient

» Often addressed by using public key crypto to
exchange a session key

+ Digital signature binds the public key to an entity

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.31

Page 8

Digital Certificates

+ How do you know K¢ is Alice’s public key?

+ Trusted authority (e.g., Verisign) signs binding between Alice
and K¢ with its private key KV e

-C= E({Allcer KE}’ Kvprivate)
— C: digital certificate

+ Alice: distribute her digital certificate, C

* Anyone: use trusted authority’s KV, to extract Alice’s
public key from C

—{Alice, Kg} = D(C, KV, 0)

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.30

Putting It All Together - HTTPS

+ What happens when you click on
https://www.amazon.com?

* https = “Use HTTP over SSL/TLS”
— SSL = Secure Socket Layer
— TSL = Transport Layer Security
» Successor to SSL

— Provides security layer (authentication, encryption) on
top of TCP

» Fairly transparent to applications

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.32

4/11/2012

+ Server picks protocols to use
« Server sends over its

+ (all of this is in the clear)

HTTPS Connection (SSL/TLS) (cont’d)

Browser (client) connects via Browser Amazon
TCP to Amazon’s HTTPS ‘
server

Client sends over list of
crypto protocols it supports

for this session

certificate

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.33

4/11/2012

Validating Amazon’s ldentity

How does the browser authenticate certificate signatory?

— Certificates of several certificate authorities (e.g., Verisign)
are hardwired into the browser (or OS)

If it can’t find the cert, then warns the user that site has not
been verified

— And may ask whether to continue

— Note, can still proceed, just without authentication
Browser uses public key in signatory’s cert to decrypt
signature

— Compares with its own SHA-256 hash of Amazon’s cert

Assuming signature matches, now have high confidence
it’s indeed Amazon ...

— ... assuming signatory is trustworthy

— DigiNotar CA breach (July-Sept 2011): Google, Yahoo!,

Mozilla, Tor project, Wordpress, ... (531 total certificates)
Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.35

Page 9

Inside the Server’s Certificate

» Name associated with cert (e.g., Amazon)
+ Amazon’s RSA public key
» A bunch of auxiliary info (physical address, type of cert,
expiration time)
» Name of certificate’s signatory (who signed it)
+ A public-key signature of a hash (SHA-256) of all this
— Constructed using the signatory’s private RSA key, i.e.,
— Cert = E(Hgpazse(KApbic: WWW.2Mazon.com, ...), KS,ya))
» KA,,pic: Amazon’ s public key
» KSpvatet Signatory (certificate authority) public key

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.34

Certificate Validation

Certificate

E(Hshazse(KApupic Www.amazon.com, ...), KSyyae))s
www.amazon.com, KA KS

public? public’ ***

E(Hsiazss(-), KSpuiic))

(recall, KS,,p hardwired) Hghazse(---)
v A 4
Hapinzse(KApupic WWW.amazon.com, . |)| Hspiazs6(KApupic; WWw.amazon.com, |.)

Validation failed

Validation successful

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.36

HTTPS Connection (SSL/TLS) cont’d

Browser Amazon
+ Browser constructs a random cert
session key K used for data pere’s MY |
communication kB ot data ‘
— Private key for bulk crypto K
- B K usi E(K, KA ‘
rowser encrypts K using oubic)

Amazon’s public key ‘

- Browser sends E(K, KA, ;o) t0 W | K

server
» Browser displays

plays jm S |
LK
\

+ All subsequent comm.
encrypted w/ symmetric cipher
Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

(e.g., AES128) using key K
- E.g., client can authenticate using
a password

4/11/2012 21.37

Passwords: Secrecy

+ Example: UNIX /etc/passwd file

— passwd—one way transform(hash)—encrypted passwd

— System stores only encrypted version, so OK even if
someone reads the file!

— When you type in your password, system compares
encrypted version

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

21.39

Page 10

Authentication: Passwords
+ Shared secret between two parties

+ Since only user knows password, someone types
correct password = must be user typing it

* Very common technique

« System must keep copy of secret to
check against passwords
— What if malicious user gains access to list
of passwords?
» Need to obscure information somehow
— Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.38

Passwords: How easy to guess?

» Three common ways of compromising passwords
+ Password Guessing:
— Often people use obvious information like birthday, favorite
color, girlfriend’s name, etc...
— Trivia question 1: what is the most popular password?
— Trivia question 2: what is the next most popular password?
— Answer: (from 32 million stolen passwords— Rockyou 2010)
http://www.nytimes.com/2010/01/21/technology/

21password.html

+ Dictionary Attack (against stolen encrypted list):

— Work way through dictionary and compare encrypted version of
dictionary words with entries in /etc/passwd
— http://www.skullsecurity.org/wiki/index.php/Passwords

+ Dumpster Diving:
— Find pieces of paper with passwords written on them
— (Also used to get social-security numbers, etc.)
4/11/2012

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.40

Passwords: How easy to guess? (cont’d)

+ Paradox:
— Short passwords are easy to crack
— Long ones, people write down!

+ Technology means we have to use longer passwords
— UNIX initially required lowercase, 5-letter passwords: total of
265=10million passwords
» In 1975, 10ms to check a password—1 day to crack
» In 2005, .01ps to check a password—0.1 seconds to crack
— Takes less time to check for all words in the dictionary!

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.41

Passwords: Making harder to crack (cont’d)

» Technique 4: Assign very long passwords/passphrases
— Can have more entropy (randomness—harder to crack)
— Embed password in a smart card (or ATM card)
» Requires physical theft to steal password
» Can require PIN from user before authenticates self
— Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances random number

+ Technique 5: “Zero-Knowledge Proof”
— Require a series of challenge-response questions
» Distribute secret algorithm to user
» Server presents number; user computes something from number;
returns answer to server; server never asks same “question” twice
— Often performed by smartcard plugged into system
+ Technique 6: Replace password with Biometrics &5,
— Use of one or more intrinsic physical or /
behavioral traits to identify someone i
— Examples: fingerprint reader, palm reader, retinal scan
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.43

Page 11

Passwords: Making harder to crack

+ Can’t make it impossible to crack, but can make it harder
+ Technique 1: Extend everyone’s password with a unique
number (“Salt” — stored in password file)
— Early UNIX uses 12-bit “salt” =»dictionary attacks 4096x harder

— Without salt, could pre-compute all the words in the dictionary
hashed with UNIX algorithm (modern salts are 48-128 bits)

+ Technique 2: Require more complex passwords
— Make people use at least 8-character passwords with upper-
case, lower-case, and numbers
» 708=6x10"¥=6million seconds=69 days@0.01us/check
— Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit

+ Technique 3: Delay checking of passwords
— If attacker doesn’t have access to /etc/passwd, delay every
remote login attempt by 1 second
— Makes it infeasible for rapid-fire dictionary attack
4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.42

Conclusion

+ Distributed identity: Use cryptography

+ Symmetrical (or Private Key) Encryption
—Single Key used to encode and decode
— Introduces key-distribution problem

* Public-Key Encryption
—Two keys: a public key and a private key

— Slower than private key, but simplifies key-distribution
+ Secure Hash Function

—Used to summarize data
—Hard to find another block of data with same hash
+ Passwords
— Encrypt them to help hid them
—Force them to be longer/not amenable to dictionary attack
—Use zero-knowledge request-response techniques

4/11/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 21.44

