
CS162  
Operating Systems and 
Systems Programming 

Lecture 18  
TCPʼs Flow Control, Transactions#

April 2, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 18.2!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Goals of Todayʼs Lecture#
•  TCP flow control!

•  Transactions (ACID semantics)!

Note: Some slides and/or pictures in the following are#
adapted from lecture notes by Mike Franklin.#

Lec 18.3!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Flow Control#
•  Recall: Flow control ensures a fast sender does not

overwhelm a slow receiver!
•  Example: Producer-consumer with bounded buffer

(Lecture 5)!
– A buffer between producer and consumer!
– Producer puts items into buffer as long as buffer not full#
– Consumer consumes items from buffer!

Produ-
cer#

Con-
sumer#

buffer!

Lec 18.4!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#
•  TCP: sliding window protocol at byte (not packet) level!

– Go-back-N: TCP Tahoe, Reno, New Reno!
– Selective Repeat (SR): TCP Sack !

•  Receiver tells sender how many more bytes it can receive
without overflowing its buffer (i.e., AdvertisedWindow)!

•  The ack(nowledgement) contains sequence number N of
next byte the receiver expects, i.e., receiver has received
all bytes in sequence up to and including N-1!

Lec 18.5!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

•  TCP/IP implemented by OS (Kernel)!
– Cannot do context switching on sending/receiving every packet!

»  At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to
send an 100 byte packet !

•  Need buffers to match … !
– sending app with sending TCP!
–  receiving TCP with receiving app!

Sending Process# Receiving Process#

OS!
(TCP/IP)! OS!

(TCP/IP)!

Lec 18.6!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

•  Three pairs of producer-consumer’s!
①  sending process  sending TCP!
②  Sending TCP  receiving TCP!
③  receiving TCP  receiving process!

Sending Process# Receiving Process#

TCP layer! TCP layer!

IP layer! IP layer!
OS!

!
!
1!

!
!
2!

!
!
3!

Lec 18.7!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

•  Example assumptions: !
– Maximum IP packet size = 100 bytes!
– Size of the receiving buffer (MaxRcvBuf) = 300 bytes!

•  Recall, ack indicates the next expected byte in-sequence, not
the last received byte !

•  Use circular buffers!
!

Sending Process# Receiving Process#

TCP layer! TCP layer!

IP layer! IP layer!

300 bytes!

OS!

Lec 18.8!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Circular Buffer#
•  Assume!

– A buffer of size N!
– A stream of bytes, where bytes have increasing sequence numbers!

»  Think of stream as an unbounded array of bytes and of sequence
number as indexes in this array!

•  Buffer stores at most N consecutive bytes from the stream!
•  Byte k stored at position (k mod N) + 1 in the buffer!

!

H! E! L! L! O! R! L! ! W O!
27! 28! 29! 30! 31! 32! 33! 34! 35! 36!

sequence #!

1! 2! 3! 4! 5! 6! 7! 8! 9! 10!

Circular buffer!
(N = 10)!

buffered data!

(28 mod 10) + 1 = 9 !

E! L!O! R! ! W O! E!L!

(35 mod 10) + 1 = 6 !

start!end!

Lec 18.9!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

•  LastByteWritten: last byte written by sending process !
•  LastByteSent: last byte sent by sender to receiver!
•  LastByteAcked: last ack received by sender from receiver!
•  LastByteRcvd: last byte received by receiver from sender!
•  NextByteExpected: last in-sequence byte expected by receiver!
•  LastByteRead: last byte read by the receiving process!

LastByteAcked(0)# LastByteSent(0)#

Sending Process#

NextByteExpected(1)#LastByteRcvd(0)#

LastByteRead(0)#

Receiving Process#

LastByteWritten(0)#

Lec 18.10!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

Receiving Process#

NextByteExpected# LastByteRcvd#

LastByteRead#

•  AdvertisedWindow: number of bytes TCP receiver can receive!

•  SenderWindow: number of bytes TCP sender can send!
!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)#

SenderWindow = AdvertisedWindow – (LastByteSent – LastByteAcked)#

LastByteAcked#

Sending Process#

LastByteWritten#

LastByteSent#

MaxRcvBuffer!MaxSendBuffer!

Lec 18.11!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

Receiving Process#

NextByteExpected# LastByteRcvd#

LastByteRead#

•  Still true if receiver missed data….!

•  WriteWindow: number of bytes sending process can write!

AdvertisedWindow = MaxRcvBuffer – (LastByteRcvd – LastByteRead)#

WriteWindow = MaxSendBuffer – (LastByteWritten – LastByteAcked)#

LastByteAcked#

Sending Process#

LastByteWritten#

LastByteSent#

MaxRcvBuffer!MaxSendBuffer!

Lec 18.12!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

•  Sending app sends 350 bytes!
•  Recall: !

– We assume IP only accepts packets no larger than 100 bytes!
– MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets!

LastByteAcked(0)# LastByteSent(0)#

Sending Process#

NextByteExpected(1)#LastByteRcvd(0)#

LastByteRead(0)#

Receiving Process#

LastByteWritten(350)#
1, 350!

Lec 18.13!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

1, 350!

TCP Flow Control#

LastByteAcked(0)#

Sending Process#

LastByteRead(0)#

Receiving Process#

LastByteWritten(350)#
101, 350!

LastByteSent(100)#

1,!
100!

NextByteExpected(101)#LastByteRcvd(100)#

1,
100!

Data[1,100]!{[1,100]}!
{[1,100]}!

tim
e!Sender sends first packet (i.e., first 100

bytes) and receiver gets the packet!

Lec 18.14!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiver sends ack for 1st packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) #
 = 300 – (100 – 0) = 200#

Ack=101, AdvWin = 200!

1, 350!

LastByteAcked(0)#

Sending Process#

LastByteRead(0)#

Receiving Process#

LastByteWritten(350)#
101, 350!

LastByteSent(100)#

1,!
100!

NextByteExpected(101)#LastByteRcvd(100)#

1,
100!

Lec 18.15!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(0)#

Sending Process#

LastByteRead(0)#

Receiving Process#

LastByteWritten(350)#

LastByteSent(200)# NextByteExpected(201)#LastByteRcvd(200)#

101,
200!

Sender sends 2nd packet (i.e., next 100
bytes) and receiver gets the packet!

Data[101,200]!{[1,200]}!
{[1,200]}!

1,!
100! 101, 350!101,!

200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

1,
100!

Ack=101, AdvWin = 200!

Lec 18.16!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(0)#

Sending Process#

LastByteRead(0)#

Receiving Process#

LastByteWritten(350)#

LastByteSent(200)# NextByteExpected(201)#LastByteRcvd(200)#

1, 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 2nd packet (i.e., next 100
bytes) and receiver gets the packet!

Ack=101, AdvWin = 200!

Lec 18.17!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(0)#

Sending Process#

LastByteWritten(350)#

LastByteSent(200)#

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Receiving TCP delivers first 100 bytes to
recienving process!

Ack=101, AdvWin = 200!

LastByteRead(100)#

Receiving Process#

NextByteExpected(201)#LastByteRcvd(200)#

101,
200!

1, !
100!

Lec 18.18!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(0)#

Sending Process#

LastByteWritten(350)#

LastByteSent(200)#

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Ack=101, AdvWin = 200!

Ack=201, AdvWin = 200!

Receiver sends ack for 2nd packet!
AdvWin = MaxRcvBuffer – (LastByteRcvd – LastByteRead) #
 = 300 – (200 – 100) = 200#

LastByteRead(100)#

Receiving Process#

NextByteExpected(201)#LastByteRcvd(200)#

101,
200!

Lec 18.19!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(0)#

Sending Process#

LastByteWritten(350)#

LastByteSent(300)#

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!1, 200! 201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender sends 3rd packet (i.e., next 100
bytes) and the packet is lost!

201,!
300!

{[1,300]}! Data[201,300]!

301,
350!

LastByteRead(100)#

Receiving Process#

NextByteExpected(201)#LastByteRcvd(200)#

101,
200!

Lec 18.20!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(0)#

Sending Process#

LastByteWritten(350)#

LastByteSent(300)#

Data[101,200]!{[1,200]}!
{[1,200]}!

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

Sender stops sending as window full !
SndWin = AdvWin – (LastByteSent – LastByteAcked) #

 = 300 – (300 – 0) = 0#

1,300!

{[1,300]}! Data[201,300]!

301,
350!

LastByteRead(100)#

Receiving Process#

NextByteExpected(201)#LastByteRcvd(200)#

101,
200!

Lec 18.21!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(0)#

Sending Process#

LastByteWritten(350)#

LastByteSent(300)#

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Sender gets ack for 1st packet!
•  AdWin = 200#

1,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!

Data[101,200]!{[1,200]}!
{[1,200]}!

LastByteRead(100)#

Receiving Process#

NextByteExpected(201)#LastByteRcvd(200)#

101,
200!

Lec 18.22!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(100)#

Sending Process#

LastByteWritten(350)#

LastByteSent(300)#

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

•  Ack for 1st packet (ack indicates next byte
expected by receiver)!

•  Receiver no longer needs first 100 bytes!

LastByteRead(100)#

Receiving Process#

NextByteExpected(201)#LastByteRcvd(200)#

101,
200!

Lec 18.23!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(100)#

Sending Process#

LastByteWritten(350)#

LastByteSent(300)#

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

Ack=101, AdvWin = 200!{101, 300}!

Data[101,200]!{[1,200]}!
{[1,200]}!

Sender still cannot send as window full!
SndWin = AdvWin – (LastByteSent – LastByteAcked) #

 = 200 – (300 – 100) = 0#

LastByteRead(100)#

Receiving Process#

NextByteExpected(201)#LastByteRcvd(200)#

101,
200!

Lec 18.24!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(100)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

LastByteSent(300)# NextByteExpected(201)#LastByteRcvd(200)#

101,
200!101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

•  Receiver gets ack for 2nd packet!
•  AdvWin = 200 bytes!

101,300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Lec 18.25!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(200)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

NextByteExpected(201)#LastByteRcvd(200)#

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

Ack=201, AdvWin = 200!{201, 300}!

Sender can now send new data! !
SndWin = AdvWin – (LasByteSent – LastByteAcked) = 100#

101,
200!

LastByteSent(300)#

Lec 18.26!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(200)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

NextByteExpected(201)#LastByteRcvd(350)#

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)#

301,
350!

Lec 18.27!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(200)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

NextByteExpected(201)#LastByteRcvd(350)#

101, 350!201, 350!

Data[1,100]!{[1,100]}!
{[1,100]}!

201,
300!

{[1,300]}! Data[201,300]!

301,
350!

{101, 300}!

Data[101,200]!{[1,200]}!
{[101,200]}!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)#

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Lec 18.28!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(200)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

NextByteExpected(201)#LastByteRcvd(350)#

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(350)#

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!

Lec 18.29!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(200)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

NextByteExpected(201)#LastByteRcvd(350)#

101, 350!201, 350!201,
300!

301,
350!

101,
200!

301,
350!

LastByteSent(350)#

301,
350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

Ack=201, AdvWin = 50!{201, 350}!

•  Ack still specifies 201 (first byte out of sequence) !
•  AdvWin = 50, so can sender re-send 3rd packet?!

Lec 18.30!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(200)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

LastByteRcvd(350)#NextByteExpected(351)#

101, 350!201, 350!201,
300!

301,
350!

101,
200!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)#

301,
350!

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since itʼs in existing
window – wonʼt cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

201,
300!

Lec 18.31!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(200)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

LastByteRcvd(350)#NextByteExpected(351)#

101, 350!201, 350!201,
300!

301,
350! 101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

301,
350!

LastByteSent(350)#

Ack=201, AdvWin = 50!{201, 350}!

Yes! Sender can re-send 2nd packet since itʼs in existing
window – wonʼt cause receiver window to grow !

Data[201,300]!{[201,350]}!
{[101,350]}!

Lec 18.32!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(200)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

LastByteRcvd(350)#NextByteExpected(351)#

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)#

Ack=201, AdvWin = 50!{201, 350}!

•  Sender gets 3rd packet and sends Ack for 351!
•  AdvWin = 50!

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

201,
300!

301,
350!

Lec 18.33!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Flow Control#

LastByteAcked(350)#

Sending Process#

LastByteRead(100)#

Receiving Process#

LastByteWritten(350)#

LastByteRcvd(350)#NextByteExpected(351)#

101, 350!

Data[301,350]!{[201,350]}!
{[101,200],[301,350]}!

LastByteSent(350)#

Ack=201, AdvWin = 50!{201, 350}!

Sender DONE with sending all bytes! !

Data[201,300]!{[201,350]}!
{[101,350]}!

Ack=351, AdvWin = 50!{}!

Lec 18.34!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Discussion#
•  Why not have a huge buffer at the receiver (memory is

cheap!)?!

•  Sending window (SndWnd) also depends on network
congestion!

– Congestion control: ensure that a fast receiver doesnʼt
overwhelm a router in the network (discussed in detail in
ee122)!

•  In practice there is another set of buffers in the protocol
stack, at the link layer (i.e., Network Interface Card)!

 !

Lec 18.35!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary: Reliability & Flow Control#
•  Reliable transmission!

– S&W not efficient for links with large capacity
(bandwidth) delay product!

– Sliding window far more efficient!
•  TCP: Reliable Byte Stream!

– Open connection (3-way handshaking)!
– Close connection: no perfect solution; no way for two

parties to agree in the presence of arbitrary message
losses (Byzantine General problem) !

•  Flow control: three pairs of producer consumers!
– Sending process  sending TCP!
– Sending TCP  receiving TCP!
– Receiving TCP  receiving process!

Lec 18.36!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary: Networking (Internet Layering)#

101010100110101110!

Transport
Layer !

Trans.
Hdr.

Network
Layer !

Trans.
Hdr.

Net.
Hdr.

Datalink
Layer !

Trans.
Hdr.

Net.
Hdr.

Frame
Hdr.

Physical
Layer !

Data!

Data!

Data!

Data!
Application

Layer
Any distributed protocol!
(e.g., HTTP, Skype, p2p, !
 KV protocol in your project)!

Send bits to other node directly !
connected to same physical !
network!

Send frames to other node !
directly connected to same !
physical network!
!

Send packets to another node !
possibly located in a different !
network!
!

Send segments to another!
process running on same or!
different node!

Lec 18.37!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break#

Lec 18.38!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Need for Transactions#
•  Example: assume two clients updating same value in a key-

value (KV) store at the same time!
– Client A subtracts 75; client B adds 25!

KV Store!

time!

Client A! Client B!

17 !100 !
K! V!get(17)!

100!
100!

get(17)!

17 !125 !

17 !25 !

100-75 = 25!

put(17, 25)! put(17, 125)!

100+25 = 25!

Client Bʼs
update has
been lost!!

Lec 18.39!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Solution?#
•  How did we solve such problem on a single machine?!

– Critical section, e.g., use locks!
– Letʼs apply same solution here… ! !!

KV Store!

time!

Client A! Client B!

17 !100 !
K! V!

get(17)!
100!

lock_acquire()!

17 !25 !

100-75 = 25!

put(17, 25)!

lock_acquire()!

lock_release()!

Client B canʼt
acquire lock (A
holds it)!

Now, B can
get the lock!!

Lec 18.40!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Discussion#
•  How does client B get the lock?!

– Pooling: periodically check whether the lock is free!
– KV storage system keeps a list of clients waiting for the lock,

and gives the lock to next client in the list!

•  What happens if the client holding the lock crashes?!
!
•  Network latency might be higher than update operation!

– Most of the time in critical section spent waiting for messages!

•  What is the lock granularity?!
– Do you lock every key? Do you lock the entire storage?!
– What are the tradeoffs?!

!!

Lec 18.41!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Better Solution#
•  Interleave reads and writes from different clients!

•  Provide the same semantics as clients were running
one at a time!

•  Transaction – database/storage sytemʼs abstract view
of a user program, i.e., a sequence of reads and writes!

Lec 18.42!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

“Classic” Example: Transaction

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice'; !

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Alice');!

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob'; !

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch_name
FROM accounts WHERE name = 'Bob');!

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bobʼs account!

Lec 18.43!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

The ACID properties of Transactions#
•  Atomicity: all actions in the transaction happen, or

none happen!

•  Consistency: if each transaction is consistent, and the
database starts consistent, it ends up consistent, e.g.,

– Balance cannot be negative
– Cannot reschedule meeting on February 30!

•  Isolation: execution of one transaction is isolated from
that of all others!

•  Durability: if a transaction commits, its effects persist!

Lec 18.44!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Atomicity#
•  A transaction

– might commit after completing all its operations, or
–  it could abort (or be aborted) after executing some

operations

•  Atomic Transactions: a user can think of a transaction
as always either executing all its operations, or not
executing any operations at all

–  Database/storage system logs all actions so that it can
undo the actions of aborted transactions

Lec 18.45!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Consistency#
•  Data follows integrity constraints (ICs)

•  If database/storage system is consistent before
transaction, it will be after

•  System checks ICs and if they fail, the transaction rolls
back (i.e., is aborted)

– A database enforces some ICs, depending on the ICs
declared when the data has been created

– Beyond this, database does not understand the semantics of
the data (e.g., it does not understand how the interest on a
bank account is computed)

Lec 18.46!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Isolation#
•  Each transaction executes as if it was running by itself

–  Concurrency is achieved by database/storage, which
interleaves operations (reads/writes) of various transactions

•  Techniques:
–  Pessimistic – don’t let problems arise in the first place
–  Optimistic – assume conflicts are rare, deal with them after

they happen

Lec 18.47!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Durability#
•  Data should survive in the presence of!

– System crash!
– Disk crash  need backups!

•  All committed updates and only those updates are reflected in the
database

–  Some care must be taken to handle the case of a crash
occurring during the recovery process!

Lec 18.48!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

This Lecture#
•  Deal with (I)solation, by focusing on concurrency

control

•  Next lecture focus on (A)tomicity, and partially on (D)

urability

Lec 18.49!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example#
•  Consider two transactions:!

– T1: moves $100 from account A to account B!
! ! !!
!!

– T2: moves $50 from account B to account A!

!
•  Each operation consists of (1) a read, (2) an addition/

subtraction, and (3) a write !
•  Example: A = A-100!

!

T1:A := A-100; B := B+100; !

Read(A); // R(A)
A := A – 100;

Write(A); // W(A)

T2:A := A+50; B := B-50; !

Lec 18.50!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example (cont’d)#
•  Database only sees reads and writes!

!
•  Assume initially: A = $1000 and B = $500!
•  What is the legal outcome of running T1 and T2?!

– A = $950!
– B = $550 !

T1:R(A),W(A),R(B),W(B)!T1: A:=A-100; B:=B+100; ! !

T2:R(A),W(A),R(B),W(B)!T2: A:=A+50; B:=B-50; ! !

Database View!

Lec 18.51!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example (cont’d)#

•  What is the outcome of the following execution?!

•  What is the outcome of the following execution?!

!

T1:R(A),W(A),R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1: R(A),W(A),R(B),W(B)
T2:R(A),W(A),R(B),W(B) ! B=550!A=950!

B=450!A=1050!

A=900! B=600!
A=950! B=550!

T1: A:=A-100; B:=B+100; !

T2: A:=A+50; B:=B-50; !

Initial values:!
A:=1000
B:=500

Lec 18.52!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example (cont’d)#

•  What is the outcome of the following execution?!

•  What is the outcome of the following execution?!

T1:R(A),W(A), R(B),W(B)
T2: R(A),W(A),R(B),W(B) !

T1:R(A), W(A),R(B),W(B)
T2: R(A),W(A),R(B),W(B) !B=550!A=900!

B=450!A=1050!

A=900!
A=950! B=450!

B=550!

T1: A:=A-100; B:=B+100; !

T2: A:=A+50; B:=B-50; !

Lost $50!#

Initial values:!
A:=1000
B:=500

Lec 18.53!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Transaction Scheduling#
•  Why not run only one transaction at a time?!

•  Answer: low system utilization!
– Two transactions cannot run simultaneously even if they

access different data!

•  Goal of transaction scheduling:!
– Maximize system utilization, i.e., concurency!

»  Interleave operations from different transactions!
– Preserve transaction semantics!

»  Logically the sequence of all operations in a transaction
are executed atomically!

»  Intermediate state of a transaction is not visible to other
tranasctions !

!
!

Lec 18.54!4/2! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary#
•  Transaction: a sequence of storage operations

•  ACID:
–  Atomicity: all operations in a transaction happen, or none happens
–  Consistency: if database/storage starts consistent, it ends up

consistent
–  Isolation: execution of one transaction is isolated from another
–  Durability: the results of a transaction persists!

