CS162
Operating Systems and
Systems Programming
Lecture 18
TCP’s Flow Control, Transactions

April 2, 2012
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162



Goals of Today’s Lecture

« TCP flow control

- Transactions (ACID semantics)

Note: Some slides and/or pictures in the following are
adapted from lecture notes by Mike Franklin.

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Lec 18.2



Flow Control

* Recall: Flow control ensures a fast sender does not
overwhelm a slow receiver

- Example: Producer-consumer with bounded buffer
(Lecture 5)

— A buffer between producer and consumer
— Producer puts items into buffer as long as buffer not full
— Consumer consumes items from buffer

buffer

Produ-
cer

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.3



TCP Flow Control

- TCP: sliding window protocol at byte (not packet) level
— Go-back-N: TCP Tahoe, Reno, New Reno
— Selective Repeat (SR): TCP Sack

« Receiver tells sender how many more bytes it can receive
without overflowing its buffer (i.e., AdvertisedWindow)

+ The ack(nowledgement) contains sequence number N of
next byte the receiver expects, i.e., receiver has received
all bytes in sequence up to and including N-1

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.4



TCP Flow Control

Sending Process

OS\\ / -
JCIHIE (TCP/IP)

- TCP/IP implemented by OS (Kernel)

— Cannot do context switching on sending/receiving every packet

» At 1Gbps, it takes 12 usec to send an 1500 bytes, and 0.8usec to
send an 100 byte packet

* Need buffers to match ...
— sending app with sending TCP
— receiving TCP with receiving app

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.5



TCP Flow Control

Sending Process

" TCP layer [U) TCP layer

0SH \

©f
/

IP layer x J IP layer
] ®
» Three pairs of producer-consumer’ s

@ sending process = sending TCP

@ Sending TCP - receiving TCP

@ receiving TCP - receiving process

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.6



TCP Flow Control

Sending Process

" TCP layer [ — { TCP layer
ytes

<

>

0S4 '\ i
IP layer x J IP layer

« Example assumptions:
— Maximum IP packet size = 100 bytes
— Size of the receiving buffer (MaxRcvBuf) = 300 bytes

- Recall, ack indicates the next expected byte in-sequence, not
the last received byte

« Use circular buffers

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.7



« Assume

— A buffer of size N

— A stream of bytes, where bytes have increasing sequence numbers

» Think of stream as an unbounded array of bytes and of sequence
number as indexes in this array

- Buffer stores at most N consecutive bytes from the stream

- Byte k stored at position (k mod N) + 1 in the buffer
buffered data

sequence #

Circular Buffer

\‘27 28 29 30 31 32 33 34 35 36

o In[elcfi]o] Jwlolmfe]
(28 mod 10) +1 =9 (35mod 10) +1 =6
E)I\ilr(iu;e(l)r)buffer Lo wlolRr ElL
- 1 2 3 4 5 67 8 9 10
end start

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.8



TCP Flow Control

Sending Process
@stByteWritten(O) LastByteRead(0)
LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)

- LastByteWritten: last byte written by sending process

- LastByteSent: last byte sent by sender to receiver

- LastByteAcked: last ack received by sender from receiver

- LastByteRcvd: last byte received by receiver from sender

- NextByteExpected: last in-sequence byte expected by receiver
- LastByteRead: last byte read by the receiving process

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.9



TCP Flow Control

Sending Process

/
LastByteWritten ﬂ_astByteRead
MaxSendBuffer MaxRcvBuffer,
< > < >
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

- AdvertisedWindow: number of bytes TCP receiver can receive

AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

- SenderWindow: number of bytes TCP sender can send

SenderWindow = AdvertisedWindow — (LastByteSent — LastByteAcked)

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.10



TCP Flow Control

Sending Process

Receiving Process

/
LastByteWrittek ﬂ_astByteRead
< MaxSendBuffe; < MaxRcvBuffers,
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

 Still true if receiver missed data....

AdvertisedWindow = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

« WriteWindow: number of bytes sending process can write

WriteWindow = MaxSendBuffer — (LastByteWritten — LastByteAcked)

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Lec 18.11



TCP Flow Control

Sending Process

LastByteWritten(350)\' / LastByteRead(0)
1, 350
LastByteAcked(0) LastByteSent(0) LastByteRcvd(0) NextByteExpected(1)

- Sending app sends 350 bytes
- Recall:
— We assume |P only accepts packets no larger than 100 bytes
— MaxRcvBuf = 300 bytes, so initial Advertised Window = 300 byets

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.12



TCP Flow Control

Sending Process

LastByteWritten(350)\'

Receiving Process

1,
100 101, 350

1
LastByteAcked(0) LastByteSent(100)

{[1,100]}

Data[1,100]

LastByteRead(0)
1

o

LastByteRcvd(100) NextByteExpected(101)

—| {[1,100]}

Sender sends first packet (i.e., first 100

4/2

bytes) and receiver gets the packet

Lec 18.13




Sending Process

TCP Flow Control

LastByteWritten(350)\'

Receiving Process

LastByteRead(0)

1,
100 101, 350

1

LastByteAcked(0) LastByteSent(100)

{[1,100]}

%

LastByteRcvd(100) NextByteExpected(101)

Data[1,100]
—| {[1,100]}
win = 200 —
P\C\(s‘\(ﬂ ,AQV

Receiver sends ack for 15t packet
AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

4/2

=300 - (100 — 0) = 200




TCP Flow Control

LastByteWritten(350)\' LastByteRead(0)
1, 101, 1, 101,
) 100 200 201, 350 ?99 ggg
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,200]} Data[101,200] > 11,1001
| . 20074 {{1,200])
Jot, AW~
ACK=1E

Sender sends 2" packet (i.e., next 100

bytes) and receiver gets the packet

4/2 Lec 18.15




TCP Flow Control

LastByteWritten(350)\' LastByteRead(0)
1, 200 201, 350 1, 200
1 S~ _— ™
LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
{[1,200]} Data[101,200] > 11,1001
| . ,20074 {{1,200])
Lo, ARGV
ACK=1E

Sender sends 2" packet (i.e., next 100

bytes) and receiver gets the packet

4/2 Lec 18.16




Sending Process

TCP Flow Control

1

LastByteWritten(350)\'

Receiving Process

100

\ LastByteRead(100)

1, 200 201, 350

1

LastByteAcked(0) LastByteSent(200)

{[1,100]}
{[1,2001}

Data[1,100]
Data[101,200] __—
. 200 )
Ad\’\N\n’

101,

P N

LastByteRcvd(200) NextByteExpected(201)

{[1,1001]}
{[1,2001}

Receiving TCP delivers first 100 bytes to
recienving process

4/2

Lec 18.17




TCP Flow Control

Sending Process

LastByteWritten(350)\' \LastByteRead(1 00)
1, 200 201, 350 101,

P N

1

LastByteAcked(0) LastByteSent(200) LastByteRcvd(200) NextByteExpected(201)
{{1,100]} Data[1,100]
{[1,200]} Data[101,200] _——={ {1.100]
: ‘ ’2006 {[1,200]}
AC\("\ o1, A d\’\,:c\;\,\[:l'\ﬂ = 200
k=201

Receiver sends ack for 2" packet
AdvWin = MaxRcvBuffer — (LastByteRcvd — LastByteRead)

o =300 — (200 — 100) = 200




TCP Flow Control

Sending Process

Receiving Process

\ LastByteRead(100)

LastByteWritten(350)
201, 301,
‘f 1,200 300 350

LastByteAcked(0) LastByteSent(300)

{[1,100]}

Data[1,100]

{[1,2001}

}

Data[101,200]

{[1,3001]}

00]

\

101,

P N

LastByteRcvd(200) NextByteExpected(201)

{[1,1001]}
{[1,2001}

Sender sends 3 packet (i.e., next 100

4/2

bytes) and the packet is lost

Lec 18.19




TCP Flow Control

LastByteWritten(350) \ LastByteRead(100)
301, 101,
| 1,300 aE0
| \ _——<
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
1,100 Data[1,100]

{11,100} a1, _J 1100
{[1,200]} Data[101,200]

{[1,3001]} 00] {1,2001

\

Sender stops sending as window full
SndWin = AdvWin — (LastByteSent — LastByteAcked)
412 =300-(300-0)=0 18.20




TCP Flow Control

Sending Process
LastByteWritten(350) \ LastByteRead(100)
1300 301, 101,
| ’ 350 %’\
| \
LastByteAcked(0) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
{[1,100]} Data[1,100]
—| {[1,100]}

(11,2000 7‘32%%0]4 (11,2000
{[1,300]} ,300] K/ ’

«— Ack=101, AdvWin = 200

« Sender gets ack for 15t packet
 AdWin =200

4/2 Lec 18.21




Sending Process

TCP Flow Control

Receiving Process

LastByteWritten(350)
101,300 ?3%10
1
LastByteAcked(100) LastByteSent(300)
{[1,100]} Data[1,100]
{[1,200]} Data[101,200]
{[1,300]} ,300] '(/
{101, 300} |« Ack=101, AdvWin = 200

\ LastByteRead(100)

101,

P N

LastByteRcvd(200) NextByteExpected(201)

—

{[1,1001]}
{[1,2001}

(« Ack for 18t packet (ack indicates next byte\
expected by receiver)

4/2 *_Receiver no longer needs first 100 bytes ) Lec1s.22




Sending Process

TCP Flow Control

Receiving Process

LastByteWritten(350)
101,300 ?3%10
1
LastByteAcked(100) LastByteSent(300)
{[1,100]} Data[1,100]
{[1,200]} Data[101,200]
{[1,300]} ,300] '(/
{101, 300} |« Ack=101, AdvWin = 200

\ LastByteRead(100)

101,

P N

LastByteRcvd(200) NextByteExpected(201)

—

{[1,1001]}
{[1,2001}

Sender still cannot send as window full
SndWin = AdvWin — (LastByteSent — LastByteAcked)

4/2

=200-(300-100)=0

ec 18.23




TCP Flow Control

LastByteWritten(350) \ LastByteRead(100)
101,300 ?3%10 101,
! \ _——<
LastByteAcked(100) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
1,100 Data[1,100]
{11,100} a1, _J 1 100
{[1,200]} Data[101,200]

{1,300} {[101,200]}

,300]
{1 01, 300} /4

{201, 300} j& Ack=201, AdvWin = 200

. AdvWin = 200 bytes

4/2

[- Receiver gets ack for 2"9 packet J
Lec 18.24




TCP Flow Control

LastByteWritten(350) \LastByteRead(1 00)
201, 301, 101,
300 350
A ———— N
LastByteAcked(200) LastByteSent(300) LastByteRcvd(200) NextByteExpected(201)
1,100 Data[1,100]
{[1,100]} all, _J 11,1000
{[1,200]} Data[101,200]

{1,300} {[101,200]}

,300]
{101, 300} /4

{201, 300} j& Ack=201, AdvWin = 200

Sender can now send new datal
o SndWin = AdvWin - (LasByteSent — LastByteAcked) = 100 1605




TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, o 101, 301,
300 350 o]
— | —
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
1,100 Data[1,100]
([1.100] a1, 11001
{[1,200]} Data[101,200]

{1,300} {[101,200]}

{101, 300}
{[201,350]}

Data[301,350]

—| {[101,200],[301,350]}

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.26



TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 301,
300 350 o]
— | —
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
1,100 Data[1,100]
([1.100] a1, 11001
{[1,200]} Data[101,200]

{1,300} {[101,200]}

{101, 300}
{[201,350]}

Data[301,350]

—| {[101,200],[301,350]}

{201, 350} je— Ack=201, AdvWin = 50

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.27



Sending Process

TCP Flow Control

LastByteWritten(350)

Receiving Process

201, 301,
300 350

////*

LastByteAcked(200)

{[201,350]}

LastByteRead(100)

_______

101, 301,

LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)

Data[301,350]

1,350]}

« AdvWin =50, so can sender re-send 3 packet? |,

[- Ack still specifies 201 (first byte out of sequence)
4/2




TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 301,
300 3”0 T
— | —
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(201)
{[201,350]} Data[301,350]

—| {[101,200],[301,350])

{201, 350} fe— Ack=201, AdvWin = 50

« Ack still specifies 201 (first byte out of sequence)
s | ¢ AdvWin =50, so can sender re-send 3" packet? |,




TCP Flow Control

Sending Process

LastByteWritten(350) LastByteRead(100)
201, 301, P 101, 201, 301,
300 350 e 200 300 350
/
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{[201,350]} Data[301,350]

—| {[101,200],[301,350]}

{201, 350} }e— Ack=201, AdvWin = 50
{{201,350]} Data[201,300]

— {[101,350]}

Yes! Sender can re-send 2"9 packet since it’s in existing
.» | window —won’t cause receiver window to grow




TCP Flow Control

Sending Process

LastByteWritten(350), LastByteRead(100)
201, 301, : 101, 350
30030 1|  _____
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{[201,350]} Data[301,350]

—| {[101,200],[301,350]}

{201, 350} }e— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

— {[101,350]}

Yes! Sender can re-send 2"9 packet since it’s in existing
.» | window —won’t cause receiver window to grow




TCP Flow Control

Sending Process

LastByteWritten(350), LastByteRead(100)
201, 301, : 101, 350
30030 | 1|  a_____
LastByteAcked(200) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{[201,350]} Data[301,350]

—| {[101,200],[301,350]}

{201, 350} }e— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

— {[101,350]}

o fe— Ack=351, AdvWin = 50

« Sender gets 3 packet and sends Ack for 351
2oL * AdvWin =50 5 55




TCP Flow Control

Sending Process
LastByteWritten(350)\, ______ LastByteRead(100)
101, 350
/
LastByteAcked(350) LastByteSent(350) |LastByteRcvd(350) NextByteExpected(351)
{{201,350]} Data[301,350]

—| {[101,200],[301,350]}

{201, 350} }e— Ack=201, AdvWin = 50
{[201,350]} Data[201,300]

—!| {[101,350]}

o fe— Ack=351, AdvWin =50

4/2 Lec 18.33

[ Sender DONE with sending all bytes! J




Discussion

- Why not have a huge buffer at the receiver (memory is
cheap!)?

- Sending window (SndWnd) also depends on network
congestion

— Congestion control: ensure that a fast receiver doesn’t
overwhelm a router in the network (discussed in detail in
ee122)

* In practice there is another set of buffers in the protocol
stack, at the link layer (i.e., Network Interface Card)

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.34



Summary: Reliability & Flow Control

* Reliable transmission

— S&W not efficient for links with large capacity
(bandwidth) delay product

— Sliding window far more efficient
- TCP: Reliable Byte Stream
— Open connection (3-way handshaking)

— Close connection: no perfect solution; no way for two
parties to agree in the presence of arbitrary message
losses (Byzantine General problem)

+ Flow control: three pairs of producer consumers

— Sending process =2 sending TCP
— Sending TCP - receiving TCP
— Receiving TCP - receiving process

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.35



Summary: Networking (Internet Layering)

Application Any distributed protocol
Layer Data (e.g., HTTP, Skype, p2p,
@ KV protocol in your project)
Send segments to another
Transport | | | Trans. process running on same or
L Hdr .
ayer ' different node
@ Send packets to another node
Network || . | Net [ Trans possibly located in a different
Layer | o network
@_ Send frames to other node
Datalink Datg |Frame | Net. | Trans directly connected to same
Hdr. Hdr. Hdr. :
Layer physical network
G Send bits to other node directly
Physical connected to same physical
| AT 101010100110101110 pny
y network
4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.36



5min Break

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.37



Need for Transactions

- Example: assume two clients updating same value in a key-
value (KV) store at the same time

100

100-75 =25

N

put(17, 25)

4/2

i
--—-—_--
—

-
-
-
-
—————
-
-
——
-

KV Store

\Y

100

17

17

1 254
25

Client B’s
update has
been lost!

"time

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Lec 18.38




Solution?

- How did we solve such problem on a single machine?
— Critical section, e.g., use locks

— Let’s apply same solution here...
‘ KV Store

V

lock_acquire()f-=-ae- '.".‘i‘f:??f‘_‘i'_r_e_Q::::=, _____ 171100
(A7) b | T :
J (1 03 e ee——eemmmmmmfo—oZZZZIIIIZIIZEES Client B can'’t
/ acquire lock (A
100-75'= 25 holds 1t
put(17, 25) [ == e 17] o5
lock_release()| e e e e Now. B can
| e-mmmT T time| get the lock!

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.39



Discussion

How does client B get the lock?
— Pooling: periodically check whether the lock is free

— KV storage system keeps a list of clients waiting for the lock,
and gives the lock to next client in the list

What happens if the client holding the lock crashes?

Network latency might be higher than update operation
— Most of the time in critical section spent waiting for messages

What is the lock granularity?
— Do you lock every key? Do you lock the entire storage?
— What are the tradeoffs?

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.40



Better Solution

* Interleave reads and writes from different clients

* Provide the same semantics as clients were running
one at atime

- Transaction — database/storage sytem’s abstract view
of a user program, i.e., a sequence of reads and writes

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.41



“Classic” Example: Transaction

BEGIN; --BEGIN TRANSACTION

UPDATE accounts SET balance = balance -
100.00 WHERE name = 'Alice';

UPDATE branches SET balance = balance -
100.00 WHERE name = (SELECT branch name
FROM accounts WHERE name = 'Alice');

UPDATE accounts SET balance = balance +
100.00 WHERE name = 'Bob';

UPDATE branches SET balance = balance +
100.00 WHERE name = (SELECT branch name
FROM accounts WHERE name = 'Bob');

COMMIT; —-COMMIT WORK

Transfer $100 from Alice’ s account to Bob’s account
4/2 Anthony D. Joseph and lon Stoica C5162 ©UCB Spring 2012 Cec 18.42




The ACID properties of Transactions

- Atomicity: all actions in the transaction happen, or
none happen

- Consistency: if each transaction is consistent, and the
database starts consistent, it ends up consistent, e.q.,

— Balance cannot be negative
— Cannot reschedule meeting on February 30

- Isolation: execution of one transaction is isolated from
that of all others

- Durability: if a transaction commits, its effects persist

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.43



Atomicity

e A transaction
— might commit after completing all its operations, or

— it could abort (or be aborted) after executing some
operations

e Atomic Transactions: a user can think of a transaction
as always either executing all its operations, or not
executing any operations at all

- Database/storage system /ogs all actions so that it can
undo the actions of aborted transactions

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.44



Consistency

e Data follows integrity constraints (ICs)

e If database/storage system is consistent before
transaction, it will be after

o System checks ICs and if they fail, the transaction rolls
back (i.e., is aborted)

— A database enforces some ICs, depending on the ICs
declared when the data has been created

— Beyond this, database does not understand the semantics of
the data (e.g., it does not understand how the interest on a
bank account is computed)

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.45



Isolation

e Each transaction executes as if it was running by itself

- Concurrency is achieved by database/storage, which
interleaves operations (reads/writes) of various transactions

« Techniques:
- Pessimistic — don’ t let problems arise in the first place

- Optimistic — assume conflicts are rare, deal with them after
they happen

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.46



Durability

- Data should survive in the presence of
— System crash
— Disk crash = need backups

« All committed updates and only those updates are reflected in the
database

- Some care must be taken to handle the case of a crash
occurring during the recovery process!

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.47



This Lecture

e Deal with (I)solation, by focusing on concurrency
control

o Next lecture focus on (A)tomicity, and partially on (D)
urability

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.48



Example

« Consider two transactions:
— T1: moves $100 from account A to account B

Tl:A := A-100; B := B+100;

— T2: moves $50 from account B to account A

T2:A := A+50; R := R-50;

- Each operation consists of (1) a read, (2) an addition/
subtraction, and (3) a write

- Example: A =A-100
Read (A); // R(A)
A := A — 100;
Write(A); // W(A)

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.49



Example (cont’ d)

- Database only sees reads and writes

Database View

T1:

A:=A-100;

B:=B+100;

9

T1:R (A

) W (A),R(B),W(B)

T2 :

A:=A+50;

B:=R-50;

9

T2:R (A

) W (A),R(B),W(B)

+ Assume initially: A = $1000 and B = $500
- What is the legal outcome of running T1 and T2?

4/2

— A =$950
— B = $550

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.50




Example (cont’ d)

T1:

A:=A-100; B:=

B+100;

T2 :

A:=A+50; B:

=B-50;

Initial values:
A:=1000
R:=500

- What is the outcome of the following execution?

T1:R (A
T2 :

) W (A),R(B),W(B)
"\ "\
A=900

B_600 |R(®) /W(R),R(B),W (B)

~\ /~\

A=950 B=550

- What is the outcome of the following execution?

4/2

T1: R(A),W(A),R(B),W(B)
T2:R(A) ,W(A) ,R(B),W(B) h 4
FR(B) WA, W (E A=950 B=550
A=1050 B=450

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.51




Example (cont’ d)

Tl: A:

=A-100;

B:=B+100;

T2: A:=A+50;

R:=B-50;

Initial values:
A:=1000
R:=500

- What is the outcome of the following execution?

T1:R(A),W(A), R(B),W(B)
7\ 7\
A=950 B=450

- What is the outcome of the following execution?

4/2

T1:R(B), W(A),R(B),W(B)
T2 : R(A),W(A),R(B),W(B) a 4
- WA, W{B) 1 A=900 B=550
A=1050 | | B=450 —
Lost $50!

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 20




Transaction Scheduling

* Why not run only one transaction at a time?

» Answer: low system utilization

— Two transactions cannot run simultaneously even if they
access different data

 Goal of transaction scheduling:
— Maximize system utilization, i.e., concurency
» Interleave operations from different transactions

— Preserve transaction semantics

» Logically the sequence of all operations in a transaction
are executed atomically

» Intermediate state of a transaction is not visible to other
tranasctions

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.53



Summary

e Transaction: a sequence of storage operations

e ACID:

— Atomicity: all operations in a transaction happen, or none happens

— Consistency: if database/storage starts consistent, it ends up
consistent

— Isolation: execution of one transaction is isolated from another
— Durability: the results of a transaction persists

4/2 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 18.54



