
CS162  
Operating Systems and 
Systems Programming 

Lecture 17  
Reliability, TCP, Flow Control"

March 21, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 17.2!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Placing Network Functionality"
•  Hugely influential paper: “End-to-End Arguments in

System Design” by Saltzer, Reed, and Clark (‘84)!

•  “Sacred Text” of the Internet!
– Endless disputes about what it means!
– Everyone cites it as supporting their position!

Lec 17.3!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Basic Observation"
•  Some types of network functionality can only be

correctly implemented end-to-end!
– Reliability, security, etc!

•  Because of this, end hosts:!
– Can satisfy the requirement without networkʼs help!
– Will/must do so, since canʼt rely on networkʼs help!

•  Therefore donʼt go out of your way to implement them
in the network!

•  Note: By “network” here we mean network layer"

Lec 17.4!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example: Reliable File Transfer"

•  Solution 1: make each step reliable, and then
concatenate them!

•  Solution 2: end-to-end check and try again if
necessary!

OS

Appl.

OS

Appl.

Host A Host B

OK

Lec 17.5!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Discussion"

•  Solution 1 is incomplete!
– What happens if memory is corrupted?!
– Receiver has to do the check anyway!!

•  Solution 2 is complete!
– Full functionality can be entirely implemented at

application layer with no need for reliability from lower
layers!

•  Is there any need to implement reliability at lower
layers?!

– Well, it could be more efficient!

Lec 17.6!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

End-to-End Principle"

Implementing this functionality in the network:!
•  Doesnʼt reduce host implementation complexity!
•  Does increase network complexity!
•  Probably imposes delay and overhead on all

applications, even if they donʼt need functionality!

•  However, implementing in network can enhance
performance in some cases!

– E.g., very lossy link!

Lec 17.7!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Conservative Interpretation of E2E"

•  Donʼt implement a function at the lower levels of the
system unless it can be completely implemented at this
level!

•  Unless you can relieve the burden from hosts, donʼt
bother!

Lec 17.8!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Moderate Interpretation"

•  Think twice before implementing functionality in the
network!

•  If hosts can implement functionality correctly,
implement it in a lower layer only as a performance
enhancement!

•  But do so only if it does not impose burden on
applications that do not require that functionality!

•  This is the interpretation we are using!

Lec 17.9!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"
•  Layered architecture powerful abstraction for organizing

complex networks!
•  Internet: 5 layers!

– Physical: send bits!
– Datalink: Connect two hosts on same physical media!
– Network: Connect two hosts in a wide area network!
– Transport: Connect two processes on (remote) hosts!
– Applications: Enable applications running on remote hosts

to interact !
•  Narrow waist: only one network layer in the Internet!

– Enables the higher layer (Transport and Applications)
and lower layers (Datalink and Physical) to evolve
indpendently!

Lec 17.10!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"

•  E2E argument encourages us to keep IP simple!
•  If higher layer can implement functionality correctly,

implement it in a lower layer only if!
–  it improves the performance significantly for application that

need that functionality, and!
–  it does not impose burden on applications that do not

require that functionality!

Lec 17.11!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Goals for Today"
•  Reliable Transfer & flow control!
•  TCP!

– Open connection (3-way handshake)!
– Tear-down connection!
– Flow control!

Lec 17.12!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Reliable Transfer"

•  Retransmit missing packets!
– Numbering of packets and ACKs!

•  Do this efficiently!
– Keep transmitting whenever possible!
– Detect missing packets and retransmit quickly!

•  Two schemes!
– Stop & Wait!
– Sliding Window (Go-back-n and Selective Repeat)!

Lec 17.13!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Detecting Packet Loss?"
•  Timeouts!

– Sender timeouts on not receiving ACK!

•  Missing ACKs!
– Sender ACKs each packet!
– Receiver detects a missing packet when seeing a gap in

the sequence of ACKs!
– Need to be careful! Packets and acks might be

reordered!

•  NACK: Negative ACK!
– Receiver sends a NACK specifying a packet its missing!

Lec 17.14!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Stop & Wait w/o Errors"
•  Send; wait for ack; repeat!
•  RTT: Round Trip Time (RTT): time it takes a packet to travel

from sender to receiver and back!
–  One-way latency (d): one way delay from sender and receiver !

ACK 1

Time

Sender Receiver
1!

2!

ACK 2

3!

RTT

RTT

RTT = 2*d !
(if latency is !
 symmetric)!

d

Lec 17.15!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Stop & Wait w/o Errors"
•  How many packets can you send?!
•  1 packet / RTT!
•  Throughput: number of bits delivered to receiver per sec!

ACK 1

Time

Sender Receiver
1!

2!

ACK 2

3!

RTT

RTT

Lec 17.16!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Stop & Wait w/o Errors"
•  Say, RTT = 100ms !
•  1 packet = 1500 bytes!
•  Throughput = 1500*8bits/0.1s = 120 Kbps !

ACK 1

Time

Sender Receiver
1!

2!

ACK 2

3!

RTT

RTT

Lec 17.17!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Stop & Wait w/o Errors"
•  Can be highly inefficient for high capacity links!
•  Throughput doesnʼt depend on the network capacity

even if capacity is 1Gbps, we can only send 120 Kbps!!

ACK 1

Time

Sender Receiver
1!

2!

ACK 2

3!

RTT

RTT

Lec 17.18!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Stop & Wait with Errors"
•  If a loss wait for a retransmission timeout and retransmit!
•  Ho do you pick the timeout?!

ACK 1

Time

Sender Receiver
1!

RTT

time
out 1!

Lec 17.19!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Sliding Window"
•  window = set of adjacent sequence numbers!

•  The size of the set is the window size!

•  Assume window size is n!

•  Let A be the last ackʼd packet of sender without gap;
then window of sender = {A+1, A+2, …, A+n} 

! !!
•  Sender can send packets in its window  

! !!
•  Let B be the last received packet without gap by

receiver, then window of receiver = {B+1,…, B+n} 
! !!

•  Receiver can accept out of sequence, if in window!

Lec 17.20!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Sliding Window w/o Errors"

Time!

Window size = 3 packets!

Sender! Receiver!

1!{1}!
2!{1, 2}!
3!{1, 2, 3}!
4!{2, 3, 4}!
5!{3, 4, 5}!

Sender Window! Receiver Window!

{}!

6!{4, 5, 6}!
.!
.!
.!

.!

.!

.!

{}!
{}!

Lec 17.21!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Sliding Window w/o Errors"
•  Throughput = W*packet_size/RTT!
!

Time!

Window size (W) = 3 packets!

Sender! Receiver!

1!{1}!
2!{1, 2}!
3!{1, 2, 3}!
4!{2, 3, 4}!
5!{3, 4, 5}!

Sender Window! Receiver Window!

{}!

6!{4, 5, 6}!
.!
.!
.!

.!

.!

.!

{}!
{}!

Lec 17.22!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example: Sliding Window w/o Errors"
•  Assume !

– Link capacity, C = 1Gbps!
– Latency between end-hosts, RTT = 80ms!
– packet_length = 1000 bytes !

•  What is the window size W to match linkʼs capacity, C?!

•  Solution!
We want Throughput = C!
Throughput = W*packet_size/RTT!
C = W*packet_size/RTT!
W = C*RTT/packet_size = 109bps*80*10-3s/(8000b) = 104 packets !

Window size ~ Bandwidth (Capacity), delay (RTT/2) product!

Lec 17.23!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Sliding Window with Errors"

•  Two approaches!
– Go-Back-n (GBN)!
– Selective Repeat (SR)!

•  In the absence of errors they behave identically!

•  Go-Back-n (GBN)!
– Transmit up to n unacknowledged packets!
–  If timeout for ACK(k), retransmit k, k+1, …!

Lec 17.24!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

GBN Example with Errors"

Window size = 3 packets!

Sender! Receiver!

1!
2!
3!
4!
5!

{}!
{}!
{}!

6!
{5}!
{5,6}!

4 is !
missing!Timeout!

Packet 4!

4!
5!
6! {}!

Why doesnʼt
sender retransmit

packet 4 here?!Assume
packet 4

lost!!

Lec 17.25!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Selective Repeat (SR)"
•  Sender: transmit up to n unacknowledged packets;!

•  Assume packet k is lost!

•  Receiver: indicate packet k is missing!

•  Sender: retransmit packet k !

Lec 17.26!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

SR Example with Errors"

Time"

Sender" Receiver"

1"
2"
3"
4"
5"
6"

4"

7"

Nack = 4"

Window size = 3 packets"{1}"
{1, 2}"

{1, 2, 3}"
{2, 3, 4}"
{3, 4, 5}"
{4, 5, 6}"

{4,5,6}"

{7}"

Lec 17.27!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Flow Control "
•  Sliding window already implements flow control!

– Advertised Window (AdWin): receiver buffer !
– Ack packet specifies the seq. number of last packet

received in sequence!

1!{1}!
{1}!

{1,2,3}! 3!

2!{1,2}!
{1,2} {2}!

ack=1, AdWin =2!

{2, 3}!
ack=2, AdWin = 2!

{3}!
4!{3,4}! {2,4}!

ack=2, AdWin = 0!

{3,4}! 3!
{2,3,4}!

Pkt 1 delivered
to app!

Lec 17.28!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Socket API"
•  Socket API!

– Network programming interface!
!

Socket"
API"

TCP" UDP"

IP"

Application"

Transport"

Network "

Lec 17.29!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

BSD Socket API"

•  Created at UC Berkeley (1980s)!

•  Most popular network API!

•  Ported to various OSes, various languages!
– Windows Winsock, BSD, OS X, Linux, Solaris, …!
– Socket modules in Java, Python, Perl, …!

•  Similar to Unix file I/O API!
–  In the form of file descriptor (sort of handle).!
– Can share the same read()/write()/close() system

calls!

Lec 17.30!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP: Transport Control Protocol"

•  Reliable, in-order, and at most once delivery!

•  Stream oriented: messages can be of arbitrary length!

•  Provides multiplexing/demultiplexing to IP!

•  Provides congestion control and avoidance!

•  Application examples: file transfer, chat!

Lec 17.31!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

TCP Service"

1)  Open connection: 3-way handshaking!

2)  Reliable byte stream transfer from (IPa,
TCP_Port1) to (IPb, TCP_Port2)!
•  Indication if connection fails: Reset!

3)  Close (tear-down) connection!

Lec 17.32!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Open Connection: 3-Way Handshaking"
•  Goal: agree on a set of parameters, i.e., the start sequence

number for each side!
– Starting sequence number: sequence of first byte in stream !
– Starting sequence numbers are random!

Lec 17.33!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Open Connection: 3-Way Handshaking"
•  Server waits for new connection calling listen()!
•  Sender call connect() passing socket which contains serverʼs

IP address and port number !
– OS sends a special packet (SYN) containing a proposal for first

sequence number, x!

Client (initiator)" Server"

SYN, SeqNum = x"

Active  
Open"

Passive  
Open"

connect()" listen()"

Lec 17.34!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Open Connection: 3-Way Handshaking"
•  If it has enough resources, server calls accept() to accept

connection, and sends back a SYN ACK packet containing!
– clientʼs sequence number incremented by one, (x + 1)!

» Why is this needed? !
– A sequence number proposal, y, for the first byte the server will

send!
Client (initiator)" Server"

SYN, SeqNum = x"

SYN and ACK, SeqNum = y and Ack = x + 1"

ACK, Ack = y + 1"

Active  
Open"

Passive  
Open"

connect()" listen()"

accept()"

allocate  
buffer space"

Lec 17.35!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

3-Way Handshaking (cont’d) "

•  Three-way handshake adds 1 RTT delay !

•  Why?!
– Congestion control: SYN (40 byte) acts as cheap probe!
– Protects against delayed packets from other connection

(would confuse receiver)!

Lec 17.36!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Close Connection (Two Generals Problem) "

•  Goal: both sides agree to close the connection!
•  Two-army problem: !

–  “Two blue armies need to simultaneously attack the white army to win;
otherwise they will be defeated. The blue army can communicate only
across the area controlled by the white army which can intercept the
messengers.” !

!

•  What is the solution?!

Lec 17.37!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Close Connection"

•  4-ways tear down connection!

FIN"
FIN ACK"

FIN"
FIN ACK"

Host 1" Host 2"

tim
eo

ut
"

  Avoid reincarnation"
  Can retransmit FIN ACK  
 if it is lost"

closed"

close"

close"

closed"

data"

Lec 17.38!3/21! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"
•  Reliable transmission!

– S&W not efficient for links with large capacity
(bandwidth) delay product!

– Sliding window far more efficient!

•  TCP: Reliable Byte Stream!
– Open connection (3-way handshaking)!
– Close connection: no perfect solution; no way for two

parties to agree in the presence of arbitrary message
losses (Byzantine General problem) !

