
CS162  
Operating Systems and 
Systems Programming 

Lecture 15  
Chord, Network Protocols"

March 14, 2012!
nthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 15.2!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Recap: Scaling Up Directory"
•  Challenge:!

– Directory contains a number of entries equal to number
of (key, value) tuples in the system!

– Can be tens or hundreds of billions of entries in the
system!!

•  Solution: consistent hashing"
•  Associate to each node a unique id in an uni-

dimensional space 0..2m-1!
– Partition this space across M machines!
– Assume keys are in same uni-dimensional space!
– Each (Key, Value) is stored at the node with the smallest

ID larger than Key!

Lec 15.3!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Recap: Key to Node Mapping
Example"

•  m = 8  ID space: 0..63 !
•  Node 8 maps keys [5,8]!
•  Node 15 maps keys

[9,15]!
•  Node 20 maps keys [16,

20]!
•  …!
•  Node 4 maps keys [59,

4]!

4

20

32 35

8

15

44

58

14! V14!

63 0

Lec 15.4!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Recap: Scaling Up Directory"

•  With consistent hashing, directory contains only a number of
entries equal to number of nodes!

– Much smaller than number of tuples!
•  Next challenge: every query still needs to contact the directory !

•  Solution: distributed directory (a.k.a. lookup) service:!
– Given a key, find the node storing that key!

•  Key idea: route request from node to node until reaching the
node storing the requestʼs key!

•  Key advantage: totally distributed!
– No point of failure; no hot spot!

Lec 15.5!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Chord: Distributed Lookup
(Directory) Service"

•  Key design decision!
– Decouple correctness from efficiency!

•  Properties !
– Each node needs to know about O(log(M)), where M is the

total number of nodes!
– Guarantees that a tuple is found in O(log(M)) steps!

•  Many other lookup services: CAN, Tapestry, Pastry,
Kademlia, …!

Lec 15.6!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Lookup"

•  Each node maintains
pointer to its successor !

•  Route packet (Key,
Value) to the node
responsible for ID using
successor pointers!

•  E.g., node=4 lookups
for node responsible for
Key=37 !

4"

20"

32"35"

8"

15"

44"

58"

lookup(37)"

node=44 is
responsible
for Key=37"

Lec 15.7!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Stabilization Procedure"
•  Periodic operation performed by each node n to maintain

its successor when new nodes join the system!

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x; // if x better successor, update !
 succ.notify(n); // n tells successor about itself "

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ; // if nʼ is better predecessor, update!

!

"

!

"

Lec 15.8!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  Node with id=50
joins the ring!

  Node 50 needs to
know at least one
node already in the
system!
-  Assume known

node is 15!
! !

succ=4"
pred=44"

succ=nil"
pred=nil"

succ=58"
pred=35"

Lec 15.9!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 sends join(50)
to node 15 !

  n=44 returns node 58 !
  n=50 updates its

successor to 58! join(50)"

succ=4"
pred=44"

succ=nil"
pred=nil"

succ=58"
pred=35"

58"

succ=58"

Lec 15.10!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 executes
stabilize()!

  nʼs successor (58)
returns x = 44!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

!

"

succ=58"

Lec 15.11!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 executes
stabilize()!
  x = 44!
  succ = 58!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

!

"

succ=58"

Lec 15.12!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 executes
stabilize()!
  x = 44!
  succ = 58!

  n=50 sends to itʼs
successor (58)
notify(50)!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

!

"

succ=58"

Lec 15.13!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=58 processes
notify(50)!
  pred = 44!
  nʼ = 50!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"

!

"

succ=58"

Lec 15.14!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=58 processes
notify(50)!
  pred = 44!
  nʼ = 50!

  set pred = 50!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"

!

"

succ=58"

pred=50"

Lec 15.15!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=44 runs
stabilize()!

  nʼs successor (58)
returns x = 50!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=50"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

!

"

succ=58"

x=50"

Lec 15.16!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=44 runs
stabilize()!
  x = 50!
  succ = 58!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=50"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

!

"

succ=58"

Lec 15.17!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=44 runs
stabilize()!
  x = 50!
  succ = 58!

  n=44 sets
succ=50!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=50"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

!

"

succ=58"

succ=50"

Lec 15.18!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=44 runs
stabilize()!

  n=44 sends
notify(44) to its
successor !

pred=nil"

succ=50"
pred=35"

succ=4"
pred=50"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"

!

"

succ=58"

notify(44)"

Lec 15.19!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 processes
notify(44)!
  pred = nil!

pred=nil"

succ=50"
pred=35"

succ=4"
pred=50"

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"

!

"

succ=58"

notify(44)"

Lec 15.20!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 processes
notify(44)!
  pred = nil!

  n=50 sets pred=44!

pred=nil"

succ=50"
pred=35"

succ=4"
pred=50"

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"

!

"

succ=58"

notify(44)"

pred=44"

Lec 15.21!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation (contʼd)"

4"

20"

32"35"

8"

15"

44"

58"

50"

  This completes the joining
operation!!

succ=58"

succ=50"

pred=44"

pred=50"

Lec 15.22!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Achieving Efficiency: finger tables!

80 + 20"
80 + 21"

80 + 22"
80 + 23"

80 + 24"

80 + 25"
(80 + 26) mod 27 = 16"

0
Say m=7

ith entry at peer with id n is first peer with id >=

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

45 80

20
112

96

Lec 15.23!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Achieving Fault Tolerance for
Lookup Service"

•  To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor!

•  In the pred() reply message, node A can send its k-1
successors to its predecessor B!

•  Upon receiving pred() message, B can update its
successor list by concatenating the successor list
received from A with its own list!

•  If k = log(M), lookup operation works with high
probability even if half of nodes fail, where M is number
of nodes in the system!

Lec 15.24!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Storage Fault Tolerance"

•  Replicate tuples on
successor nodes!

•  Example: replicate
(K14, V14) on
nodes 20 and 32!

4

20

32 35

8

15

44

58

14! V14!

63 0

14! V14!

14! V14!

Lec 15.25!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Storage Fault Tolerance"

•  If node 15 fails, no
reconfiguration
needed!
–  Still have two

replicas !
–  All lookups will be

correctly routed!

•  Will need to add a
new replica on
node 35!

4

20

32 35

8

15

44

58

14! V14!

63 0

14! V14!

14! V14!

Lec 15.26!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Iterative vs. Recursive Lookup"

•  Iteratively: !
– Example: node 44

issue query(31)!

•  Recursively!
– Example: node 44

issue query(31)!

4!

8!

15!

32!
35!

50!

58!

44!
25!

25!

32!
4!

8!

15!

32!
35!

50!

58!

44!
25!32!

Lec 15.27!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Conclusions: Key Value Store"

•  Very large scale storage systems!
•  Two operations!

– put(key, value)!
– value = get(key)!

•  Challenges!
– Fault Tolerance  replication!
– Scalability  serve get()ʼs in parallel; replicate/cache hot

tuples!
– Consistency  quorum consensus to improve put()

performance!

Lec 15.28!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Conclusions: Chord"

•  Highly scalable distributed lookup protocol!
•  Each node needs to know about O(log(M)), where m is

the total number of nodes!
•  Guarantees that a tuple is found in O(log(M)) steps!
•  Highly resilient: works with high probability even if half of

nodes fail!

Lec 15.29!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Project 3 (Single Node K/V Store) 
You are expected to learn"

•  Networking concepts!
•  Using synchronization primitives!
•  How to use threading in Java!
•  Cache replacement policies!
•  Message formats (XML)!
•  Using EC2!

Lec 15.30!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Project 3 Parts"
•  Set up EC2 + Simple network echo program!
•  XML Parsing and data marshalling!
•  Create a client for request generation!
•  Implement a ThreadPool!
•  Create an LRU Cache!
•  Putting it all together: Create a K/V Server with caching

and asynchronous data servicing!

Lec 15.31!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

Lec 15.32!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Networking: This Lectureʼs Goals"
•  What is a protocol?!

•  Layering!

Many slides generated from my lecture notes by Vern Paxson,
and Scott Shenker."

Lec 15.33!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

What Is A Protocol?"

•  A protocol is an agreement on how to communicate!

•  Includes!
–  Syntax: how a communication is specified & structured!

»  Format, order messages are sent and received!
–  Semantics: what a communication means!

»  Actions taken when transmitting, receiving, or when a
timer expires!

Lec 15.34!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Examples of Protocols in Human Interactions"

•  Telephone!
1.  (Pick up / open up the phone.)!
2.  Listen for a dial tone / see that you have service.!
3.  Dial!
4.  Should hear ringing …!
5.  Callee: “Hello?”!
6.  Caller: “Hi, it’s Alice ….” 

Or: “Hi, it‘s me” (← what’s that about?)!
7.  Caller: “Hey, do you think … blah blah blah …” pause!
8.  Callee: “Yeah, blah blah blah …” pause"
9.  Caller: Bye!
10.  Callee: Bye!
11.  Hang up!

Lec 15.35!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Examples of Protocols in Human
Interactions"

•  Asking a question!
1.  Raise your hand.!
2.  Wait to be called on.!

3.  Or: wait for speaker to pause and vocalize!

Lec 15.36!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

End System: Computer on the ʻNet"

Internet

Also known as a “host”…

Lec 15.37!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Clients and Servers"

•  Client program!
–  Running on end host!
–  Requests service!
–  E.g., Web browser!

GET /index.html

Lec 15.38!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Clients and Servers"

•  Client program!
–  Running on end host!
–  Requests service!
–  E.g., Web browser!

•  Server program!
–  Running on end host!
–  Provides service!
–  E.g., Web server!

GET /index.html

“Site under construction”

Lec 15.39!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Client-Server Communication"

•  Client “sometimes on”!
–  Initiates a request to the

server when interested!
–  E.g., Web browser on your

laptop or cell phone!
–  Doesnʼt communicate

directly with other clients!
–  Needs to know the serverʼs

address!

•  Server is “always on”!
–  Services requests from

many client hosts!
–  E.g., Web server for the

www.cnn.com Web site!
–  Doesnʼt initiate contact with

the clients!
–  Needs a fixed, well-known

address!

Lec 15.40!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Peer-to-Peer Communication"

•  Not always-on server at the center of it all!
–  Hosts can come and go, and change addresses!
–  Hosts may have a different address each time!

•  Example: peer-to-peer file sharing!
–  Any host can request files, send files, query to find where a

file is located, respond to queries, and forward queries!
–  Scalability by harnessing millions of peers!
–  Each peer acting as both a client and server!

Lec 15.41!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

The Problem"

•  Many different applications!
– email, web, P2P, etc.!

•  Many different network styles and technologies!
– Wireless vs. wired vs. optical, etc.!

•  How do we organize this mess?!

Lec 15.42!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!42

The Problem (contʼd)"

•  Re-implement every application for every
technology?!

•  No! But how does the Internet design avoid this?!

Skype SSH NFS

Radio Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Lec 15.43!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!43

Solution: Intermediate Layers"

•  Introduce intermediate layers that provide set of abstractions
for various network functionality & technologies!

–  A new app/media implemented only once!
–  Variation on “add another level of indirection”!

Skype SSH NFS

Packet
radio

Coaxial
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate
layers

Lec 15.44!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Software System Modularity"
Partition system into modules & abstractions:!
•  Well-defined interfaces give flexibility!

– Hides implementation - thus, it can be freely changed!
–  Extend functionality of system by adding new modules!

•  E.g., libraries encapsulating set of functionality!
•  E.g., programming language + compiler abstracts away

not only how the particular CPU works …!
– … but also the basic computational model!

•  Well-defined interfaces hide information!
–  Isolate assumptions !
–  Present high-level abstractions!
– But can impair performance!

Lec 15.45!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Network System Modularity"

Like software modularity, but:!
•  Implementation distributed across many machines

(routers and hosts)!

•  Must decide:!
– How to break system into modules!

»  Layering!
– What functionality does each module implement!

»  End-to-End Principle"

•  We will address these choices next lecture!

Lec 15.46!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Layering: A Modular Approach"

•  Partition the system!
– Each layer solely relies on services from layer below !
– Each layer solely exports services to layer above!

•  Interface between layers defines interaction!
– Hides implementation details!
– Layers can change without disturbing other layers!

Lec 15.47!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Protocol Standardization"
•  Ensure communicating hosts speak the same protocol!

–  Standardization to enable multiple implementations!
– Or, the same folks have to write all the software!

•  Standardization: Internet Engineering Task Force!
–  Based on working groups that focus on specific issues!
–  Produces “Request For Comments” (RFCs)!

»  Promoted to standards via rough consensus and running code!
–  IETF Web site is http://www.ietf.org!
– RFCs archived at http://www.rfc-editor.org!

•  De facto standards: same folks writing the code!
–  P2P file sharing, Skype, <your protocol here>…!

Lec 15.48!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example: The Internet Protocol (IP):
“Best-Effort” Packet Delivery"

•  Datagram packet switching!
– Send data in packets!
– Header with source & destination address!

•  Service it provides:!
– Packets may be lost!
– Packets may be corrupted!
– Packets may be delivered out of order!

source destination

IP network

Lec 15.49!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example: Transmission Control
Protocol (TCP)"

•  Communication service!
–  Ordered, reliable byte stream!
–  Simultaneous transmission in both directions!

•  Key mechanisms at end hosts!
–  Retransmit lost and corrupted packets!
–  Discard duplicate packets and put packets in order!
–  Flow control to avoid overloading the receiver buffer!
–  Congestion control to adapt sending rate to network load!

source network destination

TCP connection

Lec 15.50!3/14! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"

•  Roles of!
– Standardization!
– Clients, servers, peer-to-peer!

•  Layered architecture as a powerful means for organizing
complex networks!

– Though layering has its drawbacks too!
•  Next lecture!

– Layering!
– End-to-end arguments!

