
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 14  
 

Key Value Storage Systems"

March 12, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 14.2!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Key Value Storage"

•  Handle huge volumes of data, e.g., PBs!
– Store (key, value) tuples!

•  Simple interface!
– put(key, value); // insert/write “value” associated with “key”!
– value = get(key); // get/read data associated with “key”!

•  Used sometimes as a simpler but more scalable
“database”!

Lec 14.3!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  Amazon:!
– Key: customerID!
– Value: customer profile (e.g., buying history, credit card, ..)!

•  Facebook, Twitter:!
– Key: UserID !
– Value: user profile (e.g., posting history, photos, friends, …)!

! ! !!
•  iCloud/iTunes:!

– Key: Movie/song name!
– Value: Movie, Song!

Key Values: Examples "

Lec 14.4!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

System Examples"
•  Amazon"

– Dynamo: internal key value store used to power Amazon.com
(shopping cart)!

– Simple Storage System (S3)!

•  BigTable/HBase/Hypertable: distributed, scalable data storage!

•  Cassandra: “distributed data management system” (developed
by Facebook)!

•  Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects) !

•  eDonkey/eMule: peer-to-peer sharing system!

•  …!

Page 2

Lec 14.5!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Key Value Store"
•  Also called a Distributed Hash Table (DHT)!
•  Main idea: partition set of key-values across many

machines!
!

!
!
!

key, value

…"

Lec 14.6!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Challenges"

•  Fault Tolerance: handle machine failures without losing
data and without degradation in performance!

•  Scalability: "
– Need to scale to thousands of machines !
– Need to allow easy addition of new machines!

•  Consistency: maintain data consistency in face of node
failures and message losses !

•  Heterogeneity (if deployed as peer-to-peer systems):!
– Latency: 1ms to 1000ms!
– Bandwidth: 32Kb/s to 100Mb/s!

…"

Lec 14.7!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Key Questions"
•  put(key, value): where do you store a new (key, value)

tuple?!
•  get(key): where is the value associated with a given

“key” stored?!

•  And, do the above while providing !
– Fault Tolerance!
– Scalability!
– Consistency!

Lec 14.8!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Directory-Based Architecture"
•  Have a node maintain the mapping between keys and

the machines (nodes) that store the values
associated with the keys"

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!

put(K14, V14)!

pu
t(K

14
, V

14
)!

Page 3

Lec 14.9!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Directory-Based Architecture"
•  Have a node maintain the mapping between keys and

the machines (nodes) that store the values
associated with the keys"

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!

get(K14)!

ge
t(K

14
)!

V1
4!

V14!

Lec 14.10!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Directory-Based Architecture"
•  Having the master relay the requests  recursive query"
•  Another method: iterative query (this slide)!

– Return node to requester and let requester contact node!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!
put(K14, V14)!

put(K14, V14)!

N3!

Lec 14.11!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Directory-Based Architecture"
•  Having the master relay the requests  recursive query"
•  Another method: iterative query"

– Return node to requester and let requester contact node!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N3!
K105!N50!

Master/Directory!
get(K14)!

get(K14)!

V14!
N3!

Lec 14.12!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Discussion: Iterative vs. Recursive Query"

•  Recursive Query:!
–  Advantages: !

»  Faster, as typically master/directory closer to nodes!
»  Easier to maintain consistency, as master/directory can

serialize puts()/gets()!
– Disadvantages: scalability bottleneck, as all “Values” go through

master/directory!
•  Iterative Query!

–  Advantages: more scalable!
– Disadvantages: slower, harder to enforce data consistency!

…"

N1! N2! N3! N50!

K14! V14!

K14! N3!

Master/Directory!

get(K14)!

ge
t(K

14
)!

V1
4!

V14!

…"

N1! N2! N3! N50!

K14! V14!

K14! N3!

Master/Directory!
get(K14)!

get(K14)!

V14!
N3!

Recursive! Iterative!

Page 4

Lec 14.13!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Fault Tolerance"
•  Replicate value on several nodes!
•  Usually, place replicas on different racks in a datacenter

to guard against rack failures!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14)!

put(K14, V14), N1!

N1, N3!

K14! V14!

put(K14, V14)!

Lec 14.14!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Fault Tolerance"
•  Again, we can have !

– Recursive replication (previous slide)!
–  Iterative replication (this slide)!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14)!

put(K14, V14)!

N1, N3!

K14! V14!

pu
t(K

14
, V

14
)!

Lec 14.15!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Fault Tolerance"
•  Or we can use recursive query and iterative

replication…!

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14)!

put(K14, V14)!

K14! V14!

put(K14, V14)!

Lec 14.16!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Scalability"
•  Storage: use more nodes!

•  Number of requests: !
– Can serve requests from all nodes on which a value is

stored in parallel!
– Master can replicate a popular value on more nodes!

•  Master/directory scalability:!
– Replicate it!
– Partition it, so different keys are served by different

masters/directories!
» How do you partition? !

Page 5

Lec 14.17!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Scalability: Load Balancing"
•  Directory keeps track of the storage availability at each

node!
– Preferentially insert new values on nodes with more

storage available!

•  What happens when a new node is added?!
– Cannot insert only new values on new node. Why?!
– Move values from the heavy loaded nodes to the new

node!

•  What happens when a node fails?!
– Need to replicate values from fail node to other nodes!

Lec 14.18!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Consistency"
•  Need to make sure that a value is replicated correctly!

•  How do you know a value has been replicated on
every node? !

– Wait for acknowledgements from every node!

•  What happens if a node fails during replication?!
– Pick another node and try again!

•  What happens if a node is slow?!
– Slow down the entire put()? Pick another node?!

•  In general, with multiple replicas!
– Slow puts and fast gets!
!
!

Lec 14.19!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Consistency (contʼd)"
•  If concurrent updates (i.e., puts to same key) may need

to make sure that updates happen in the same order !

…"

N1! N2! N3! N50!

K5! V5! K14! V14! K105!V105!

K5! N2!
K14! N1,N3 !
K105!N50!

Master/Directory!
put(K14, V14ʼ)!

put(K14, V14ʼ)!

K14! V14!

put(K14, V14ʼʼ)
!

put(K14, V14ʼʼ)!

put(K14, V14ʼ)!

put(K14, V14ʼ')!

K14! V14ʼʼ!K14! V14ʼ!

•  put(K14, V14ʼ) and put(K14,
V14ʼʼ) reach N1 and N3 in
reverse order!

•  What does get(K14) return?!
•  Undefined!!

Lec 14.20!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Consistency (contʼd)"
•  Large variety of consistency models:!

– Atomic consistency (linearizability): reads/writes (gets/puts)
to replicas appear as if there was a single underlying replica
(single system image)!

»  Think “one updated at a time”!
»  Transactions (later in the class) !

– Eventual consistency: given enough time all updates will
propagate through the system!

» One of the weakest form of consistency; used by many
systems in practice!

– And many others: causal consistency, sequential
consistency, strong consistency, …!

Page 6

Lec 14.21!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Quorum Consensus"
•  Improve put() and get() operation performance!

•  Define a replica set of size N!
•  put() waits for acknowledgements from at least W

replicas!
•  get() waits for responses from at least R replicas!
•  W+R > N!

•  Why does it work?!
– There is at least one node that contains the update!

•  Why you may use W+R > N+1? !

Lec 14.22!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Quorum Consensus Example"
•  N=3, W=2, R=2!
•  Replica set for K14: {N1, N2, N4}!
•  Assume put() on N3 fails!

N1! N2! N3! N4!

K14! V14!K14! V14!

pu
t(K

14
, V

14
)!

ACK!
put(K14, V14)!pu

t(K
14

, V
14

)!

ACK!

Lec 14.23!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Quorum Consensus Example"
•  Now, issuing get() to any two nodes out of three will return

the answer!
!

N1! N2! N3! N4!

K14! V14!K14! V14!

ge
t(K

14
)!

V14
!

get(K14)!

nill!

Lec 14.24!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

Page 7

Lec 14.25!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Scaling Up Directory"
•  Challenge:!

– Directory contains a number of entries equal to number
of (key, value) tuples in the system!

– Can be tens or hundreds of billions of entries in the
system!!

•  Solution: consistent hashing"
•  Associate to each node a unique id in an uni-

dimensional space 0..2m-1!
– Partition this space across m machines!
– Assume keys are in same uni-dimensional space!
– Each (Key, Value) is stored at the node with the smallest

ID larger than Key!

Lec 14.26!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Key to Node Mapping Example"

•  m = 8  ID space: 0..63 !
•  Node 8 maps keys [5,8]!
•  Node 15 maps keys

[9,15]!
•  Node 20 maps keys [16,

20]!
•  …!
•  Node 4 maps keys [59,

4]!

4

20

32 35

8

15

44

58

14! V14!

63 0

Lec 14.27!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Scaling Up Directory "

•  With consistent hashing, directory contains only a number of
entries equal to number of nodes!

– Much smaller than number of tuples!
•  Next challenge: every query still needs to contact the directory !

•  Solution: distributed directory (a.k.a. lookup) service:!
– Given a key, find the node storing that key!

•  Key idea: route request from node to node until reaching the
node storing the requestʼs key!

•  Key advantage: totally distributed!
– No point of failure; no hot spot!

Lec 14.28!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Chord: Distributed Lookup
(Directory) Service"

 !
•  Key design decision!

– Decouple correctness from efficiency!

•  Properties !
– Each node needs to know about O(log(M)), where M is the

total number of nodes!
– Guarantees that a tuple is found in O(log(M)) steps!

•  Many other lookup services: CAN, Tapestry, Pastry,
Kademlia, …!

Page 8

Lec 14.29!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Lookup"

•  Each node maintains
pointer to its successor !

•  Route packet (Key,
Value) to the node
responsible for ID using
successor pointers!

•  E.g., node=4 lookups
for node responsible for
Key=37 !

4"

20"

32"35"

8"

15"

44"

58"

lookup(37)"

node=44 is
responsible
for Key=37"

Lec 14.30!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Stabilization Procedure"
•  Periodic operation performed by each node n to maintain

its successor when new nodes join the system!

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x; // if x better successor, update !
 succ.notify(n); // n tells successor about itself "
"
n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ; // if nʼ is better predecessor, update!
 "

!

"

!

"

Lec 14.31!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  Node with id=50
joins the ring!

  Node 50 needs to
know at least one
node already in the
system!
-  Assume known

node is 15!
! !
!!

succ=4"
pred=44"

succ=nil"
pred=nil"

succ=58"
pred=35"

Lec 14.32!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 sends join(50)
to node 15 !

  n=44 returns node 58 !
  n=50 updates its

successor to 58!
join(50)"

succ=4"
pred=44"

succ=nil"
pred=nil"

succ=58"
pred=35"

58"

succ=58"

Page 9

Lec 14.33!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 executes
stabilize()!

  nʼs successor (58)
returns x = 44!

pred=nil"

succ=58"
pred=35"

x=
44
"

succ=4"
pred=44"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

!

"

succ=58"

Lec 14.34!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 executes
stabilize()!
  x = 44!
  succ = 58!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

!

"

succ=58"

Lec 14.35!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 executes
stabilize()!
  x = 44!
  succ = 58!

  n=50 sends to itʼs
successor (58)
notify(50)!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

!

"

succ=58"

no
tif

y(
50

)"

Lec 14.36!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=58 processes
notify(50)!
  pred = 44!
  nʼ = 50!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"
 "
"

!

"

succ=58"

no
tif

y(
50

)"

Page 10

Lec 14.37!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=58 processes
notify(50)!
  pred = 44!
  nʼ = 50!

  set pred = 50!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=44"

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"
 "
"

!

"

succ=58"

no
tif

y(
50

)"

pred=50"

Lec 14.38!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=44 runs
stabilize()!

  nʼs successor (58)
returns x = 50!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=50"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

!

"

succ=58"

x=50"

Lec 14.39!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=44 runs
stabilize()!
  x = 50!
  succ = 58!

!

pred=nil"

succ=58"
pred=35"

succ=4"
pred=50"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

!

"

succ=58"

Lec 14.40!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=44 runs
stabilize()!
  x = 50!
  succ = 58!

  n=44 sets
succ=50!

! pred=nil"

succ=58"
pred=35"

succ=4"
pred=50"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

!

"

succ=58"

succ=50"

Page 11

Lec 14.41!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=44 runs
stabilize()!

  n=44 sends
notify(44) to its
successor !

!

pred=nil"

succ=50"
pred=35"

succ=4"
pred=50"

n.stabilize()"
 x = succ.pred;"
 if (x (n, succ))"
 succ = x;"
 succ.notify(n);"
"

!

"

succ=58"

notify(44)"

Lec 14.42!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 processes
notify(44)!
  pred = nil!

pred=nil"

succ=50"
pred=35"

succ=4"
pred=50"

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"
 "
"

!

"

succ=58"

notify(44)"

Lec 14.43!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation"

4"

20"

32"35"

8"

15"

44"

58"

50"

  n=50 processes
notify(44)!
  pred = nil!

  n=50 sets pred=44!

pred=nil"

succ=50"
pred=35"

succ=4"
pred=50"

n.notify(nʼ)"
 if (pred = nil or nʼ (pred, n))"
 pred = nʼ"
 "
"

!

"

succ=58"

notify(44)"

pred=44"

Lec 14.44!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Joining Operation (contʼd)"

4"

20"

32"35"

8"

15"

44"

58"

50"

  This completes the joining
operation!!

succ=58"

succ=50"

pred=44"

pred=50"

Page 12

Lec 14.45!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Achieving Efficiency: finger tables!

80 + 20"
80 + 21"

80 + 22"
80 + 23"

80 + 24"

80 + 25"
(80 + 26) mod 27 = 16"

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min+

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

45 80

20
112

96

Lec 14.46!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Achieving Fault Tolerance for
Lookup Service"

•  To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor!

•  In the pred() reply message, node A can send its k-1
successors to its predecessor B!

•  Upon receiving pred() message, B can update its
successor list by concatenating the successor list
received from A with its own list!

•  If k = log(M), lookup operation works with high
probability even if half of nodes fail, where M is number
of nodes in the system!

Lec 14.47!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Storage Fault Tolerance"

•  Replicate tuples on
successor nodes!

•  Example: replicate
(K14, V14) on
nodes 20 and 32!

4

20

32 35

8

15

44

58

14! V14!

63 0

14! V14!

14! V14!

Lec 14.48!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Storage Fault Tolerance"

•  If node 15 fails, no
reconfiguration
needed!
–  Still have two

replicas !
–  All lookups will be

correctly routed!

•  Will need to add a
new replica on
node 35!

4

20

32 35

8

15

44

58

14! V14!

63 0

14! V14!

14! V14!

Page 13

Lec 14.49!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Iterative vs. Recursive Lookup"

•  Iteratively: !
– Example: node 40

issue query(31)!

!
•  Recursively!

– Example: node 40
issue query(31)!

!

4!

8!

15!

32!
35!

50!

58!

40!
25!

25!

32!
4!

8!

15!

32!
35!

50!

58!

40!
25!32!

Lec 14.50!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Conclusions: Key Value Store"

•  Very large scale storage systems!
•  Two operations!

– put(key, value)!
– value = get(key)!

•  Challenges!
– Fault Tolerance  replication!
– Scalability  serve get()ʼs in parallel; replicate/cache hot

tuples!
– Consistency  quorum consensus to improve put()

performance!

!

Lec 14.51!3/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Conclusions: Chord"

•  Highly scalable distributed lookup protocol!
•  Each node needs to know about O(log(M)), where m is

the total number of nodes!
•  Guarantees that a tuple is found in O(log(M)) steps!
•  Highly resilient: works with high probability even if half of

nodes fail!

