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Key Values: Examples
amazon

* Amazon:
— Key: customerID
— Value: customer profile (e.g., buying history, credit card, ..)

- Facebook, Twitter: “ |
— Key: UserlD
— Value: user profile (e.g., postina history, photos, friends, ...)

* iCloud/iTunes: O

— Key: Movie/song name
— Value: Movie, Song
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Key Value Storage

+ Handle huge volumes of data, e.g., PBs
— Store (key, value) tuples

+ Simple interface
— put(key, value); // insert/write “value” associated with “key
— value = get(key); // get/read data associated with “key”

”

+ Used sometimes as a simpler but more scalable
“database”
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System Examples
* Amazon
— Dynamo: internal key value store used to power Amazon.com

(shopping cart)
— Simple Storage System (S3)
- BigTable/HBase/Hypertable: distributed, scalable data storage

+ Cassandra: “distributed data management system” (developed
by Facebook)

+ Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

- eDonkey/eMule: peer-to-peer sharing system
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Key Value Store

+ Also called a Distributed Hash Table (DHT)

+ Main idea: partition set of key-values across many
machines

key, value
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Key Questions

+ put(key, value): where do you store a new (key, value)
tuple?

+ get(key): where is the value associated with a given
“key” stored?

+ And, do the above while providing
— Fault Tolerance
— Scalability
— Consistency
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Challenges

B S I

Fault Tolerance: handle machine failures without losing
data and without degradation in performance

Scalability:

— Need to scale to thousands of machines

— Need to allow easy addition of new machines
Consistency: maintain data consistency in face of node
failures and message losses
Heterogeneity (if deployed as peer-to-peer systems):

— Latency: 1ms to 1000ms

— Bandwidth: 32Kb/s to 100Mb/s
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Directory-Based Architecture

* Have a node maintain the mapping between keys and
the machines (nodes) that store the values
associated with the keys

Master/Directory
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Directory-Based Architecture

+ Have a node maintain the mapping between keys and
the machines (nodes) that store the values

associated with the keys

312

Master/Directory
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Directory-Based Architecture

+ Having the master relay the requests - recursive query

Another method: iterative query

— Return node to requester and let requester contact node
Master/Directory

get(K14) === - - ———— - >
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Directory-Based Architecture

» Having the master relay the requests - recursive query

+ Another method: iterative query (this slide)
— Return node to requester and let requester contact node
Master/Directory

put(K14, V14) ==-==--------- d K5 [ N2
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Master/Directory

Discussion: Iterative vs. Recursive Query

Master/Directory

gel( mr —————— »i
VM\\ o
- \@I
~ /4—,71

4
lterative

SEE NI CENE

. Recurswe Query.
— Advantages:
» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

serialize puts()/gets()
— Disadvantages: scalability bottleneck, as all “Values” go through

master/directory

+ lterative Query

— Advantages: more scalable
— Disadvantages: slower, harder to enforce data consistency
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Fault Tolerance

+ Replicate value on several nodes

+ Usually, place replicas on different racks in a datacenter
to guard against rack failures

Master/Directory
put(K14, V14) === ===----o o 4 K5 [ N2
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Fault Tolerance
« Or we can use recursive query and iterative
replication...
Master/Directory
put(K14,V14) == === - - __ > K5 [ No
E K14 [ N1,N3
_ K1\05 N50
- %
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K14 Vid K5 [ V5 K14 Vid K105[V105]
Ny N N3 Nso
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Fault Tolerance

+ Again, we can have
— Recursive replication (previous slide)
— lterative replication (this slide)
Master/Directory
pUt(K14, V14) === === ———____ > = TG
NI, N3 ¢ ==--mom e E K14 N1 N3

AN KI05.N50

Ki4[Vi4 K5 [V5 K141 Vi4 K105|V105]

N1 N2 NS N50
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Scalability

+ Storage: use more nodes

» Number of requests:

— Can serve requests from all nodes on which a value is
stored in parallel

— Master can replicate a popular value on more nodes

+ Master/directory scalability:
— Replicate it

— Partition it, so different keys are served by different
masters/directories

» How do you partition?
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+ Directory keeps track of the storage availability at each
node

Scalability: Load Balancing

— Preferentially insert new values on nodes with more
storage available
+ What happens when a new node is added?

node

— Cannot insert only new values on new node. Why?
— Move values from the heavy loaded nodes to the new

+ What happens when a node fails?

312

— Need to replicate values from fail node to other nodes
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Consistency (cont’d)
« If concurrent updates (i.e., puts to same key) may need
to make sure that updates happen in the same order
outKia, viay - asterDirectory . 4K 14, V14') and put(K14,
R K5 _| N2 V14”) reach N1 and N3 in
put(K14, V147) = - - -»E K14 N1.N3 reverse order
| K105,'\“5‘9‘ 2+ What does get(K14) return?
DT VB * Undefined!
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Consistency
+ Need to make sure that a value is replicated correctly

* How do you know a value has been replicated on
every node?

— Wait for acknowledgements from every node

+ What happens if a node fails during replication?
— Pick another node and try again

+ What happens if a node is slow?

— Slow down the entire put()? Pick another node?

+ In general, with multiple replicas
— Slow puts and fast gets
312
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Consistency (cont’d)
+ Large variety of consistency models:

(single system image)

— Atomic consistency (linearizability): reads/writes (gets/puts)
to replicas appear as if there was a single underlying replica

» Think “one updated at a time”
» Transactions (later in the class)
— Eventual consistency: given enough time all updates will
propagate through the system

» One of the weakest form of consistency; used by many
systems in practice

— And many others: causal consistency, sequential

consistency, strong consistency,
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Quorum Consensus

Improve put() and get() operation performance

Define a replica set of size N

put() waits for acknowledgements from at least W
replicas

get() waits for responses from at least R replicas
W+R >N

* Why does it work?
— There is at least one node that contains the update

+ Why you may use W+R > N+17?
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Quorum Consensus Example

* Now, issuing get() to any two nodes out of three will return
the answer

I

[CONER

K14 Vid K14 | Vi4

N, N, N, N,
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Quorum Consensus Example

« N=3, W=2, R=2
» Replica set for K14: {N1, N2, N4}
+ Assume put() on N3 fails

s x o X
e e i \ 2
\
\b,‘\" e ot N A
N e, h \70\\)7
4\:\/70\{7 X! A
R\ 7 =1 \ w3
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N, N, N, N,
312 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 14.22
5min Break
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Scaling Up Directory

+ Challenge:

— Directory contains a number of entries equal to number
of (key, value) tuples in the system

— Can be tens or hundreds of billions of entries in the
system!

+ Solution: consistent hashing

+ Associate to each node a unique id in an uni-
dimensional space 0..2m-1

— Partition this space across m machines
— Assume keys are in same uni-dimensional space

— Each (Key, Value) is stored at the node with the smallest
ID larger than Key
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Key to Node Mapping Example
gy N

m =8 - ID space: 0..63
Node 8 maps keys [5,8]

Node 15 maps keys
[9,15] !

Node 20 maps keys [16, ,"
20]

Node 4 maps keys [59,
4]

35
~
\\ =
R
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Scaling Up Directory

+ With consistent hashing, directory contains only a number of
entries equal to number of nodes

— Much smaller than number of tuples
+ Next challenge: every query still needs to contact the directory

+ Solution: distributed directory (a.k.a. lookup) service:
— Given a key, find the node storing that key

+ Key idea: route request from node to node until reaching the
node storing the request’s key

+ Key advantage: totally distributed
— No point of failure; no hot spot
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Chord: Distributed Lookup
(Directory) Service

+ Key design decision
— Decouple correctness from efficiency

+ Properties

— Each node needs to know about O(log(M)), where M is the
total number of nodes

— Guarantees that a tuple is found in O(log(M)) steps

+ Many other lookup services: CAN, Tapestry, Pastry,
Kademlia, ...
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Lookup Stabilization Procedure

ﬁ lookup(37) + Periodic operation performed by each node n to maintain
s its successor when new nodes join the system

« Each node maintains ﬁ
pointer to its successor

n.stabilize()
X = succ.pred;
if (xe (n, succ))

« Route packet (Key,
Value) to the node

responsible for ID using node=44 is i
successor pointers responsible ﬁ succ =x; // if x better successor, update
for Key=37 succ.notify(n); // n tells successor about itself

« E.g., node=4 lookups
for node responsible for @

= n.notify(n’
Key=37 B ify(n’)

if (pred = nil or n’c (pred, n))
pred =n’; Il if n’ is better predecessor, update
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Joining Operation Joining Operation
- Node with id=50 Sroats B & . n=50 sends join(50) succ=4 [z &
joins the ring , to node 15 pred=44 {il

= n=44 returns node 58 58

= n=50 updates its
successor to 58

- Node 50 needs to
know at least one
node already in the

system join(50)
- Assume known g"‘,':g_:r?i'll ) succ=hd
node is 15 - @ pred=nil
50 1574 50
succ=58 = succ=58 || =
pred=35 @ pred=35 E
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Joining Operation

succ=4

pred= @

= n=50 executes
stabilize()

»  n’s successor (58) 5
returns x = 44 <

succ=58 |i -

pred=nil 50 15 @

succ=58 [ -

pred=35 WL ﬁ

n.stabilize()
=» X =succ.pred;
if (xe (n, succ))
succ = Xx; E E
succ.notify(n);
312
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Joining Operation

= n=50 executes succ=4
stabilize() pred=44 @
i Q\ 1
= x=44 S E
= succ =58 ES
9
= n=50 sends to it’s <
successor (58)
notify(50 succ=58 [y ,
VG0 pred=nil 50 5 ﬁ
succ=58 || ]
pred=35 Yl ﬁ
n.stabilize()

X = succ.pred;
if (xe (n, succ))
succ = Xx;

= succ.notify(n);

312
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Joining Operation

succ=4

«  n=50 executes pred=44 E

stabilize()
= x=44
= succ =58
succ=5_t‘|£ m
pred=nil 50
succ=58 [
pred=35 ¥
n.stabilize()
X = succ.pred; 3
=» if (xe(n, succ)) 2
succ = X; ﬁ E
succ.notify(n);
312
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Joining Operation

n=58 processes succ=4
notify(50) pred=44 E
= pred=44 §
= n'=50 $
N
succ=58 |y
pred=nil
succ=58 |
pred=35 ¥
n.notify(n’)
if (pred = nil or n’E (pred, n))
pred =n’
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Joining Operation

= n=58 processes

notify(50)
= pred =44 @9
« n'=50 é's*
« setpred =50 <
succ=5_t} i
pred=ni 50
succ=58 [
pred=35 WL
n.notify(n’)
if (pred = nil or n’E (pred, n))
=P pred =n’ E
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Joining Operation

succ=4

pred=50 @

= n=44runs

stabilize()
= x=50
= succ =58
succ=58 \jj
pred=nil 50
succ=58
pred=35 WL
n.stabilize()

X = succ.pred;

= if (xe(n, succ))
Succ = X; E E
succ.notify(n); !
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Joining Operation

succ=4 E

n=44 runs pred=50 E
stabilize() >
n’s successor (58)
returns x = 50 x=50
succ=58 | -
pred=nil 50 15 ﬁ
succ=58 [ =
pred=35 ¥ E

|

n.stabilize()
X = succ.pred;
if (xe(n, succ))
succ = X;
succ.notify(n);

£
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Joining Operation
succ=4
= n=44runs red=50
stabilize() P B
= x=50
= succ =58
= n=44 sets
succ=50 ss
succ= 1
pred=nil 50 15 ﬁ
pred=35 E E
n.stabilize()

|

X = succ.pred;

if (xe(n, succ))
succ =X;

succ.notify(n);

312
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Joining Operation

succ=4

|

n=44 runs d=50 |
stabilize() prea=50
n=44 sends
notify(44) to its
successor
succ=5_t}
pred=ni 50
notify(44)\
succ=50 [
pred=35 WL
n.stabilize()

X = succ.pred;

if (xe (n, succ))
succ =X;

succ.notify(n);

312
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n=50 processes
notify(44)

= pred = nil
n=50 sets pred=44

sucg:Si!li :‘
pred=# 50

Joining Operation

succ=4

pred=50 @

notify(44)\

succ=50
pred=35 WL

=

n.notify(n’)

if (pred = nil or n’E (pred, n))

pred =n’

312

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Lec 14.43

Page 11

Joining Operation

succ=4

pred=50 E

= n=50 processes

notify(44)
= pred =nil
succ=5§|£ m
pred=ni 50
notify(44)\
succ=50 |
pred=35 ¥
n.notify(n’)
= if (pred = nil or n’E (pred, n)) 3
pred =n’ E 32
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Joining Operation (cont’d)

pred=50 E

= This completes the joining
operation!

succ=58 |
pred=44 ﬁ 50

succ=50 E

&
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Achieving Efficiency: finger tables

Finger Table at 80 ) 0 Say m=7
P . 80 + 26) mod 27 = 16
0 96 80 +/28 ﬁ
1 96
2 96 | 7
3 96 80 +24 E
4 96 80+23
5 112 80 + 22
6 20 G

ith entry at peer with id # is first peer with id >= 7 +2'(mod2") ‘
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Achieving Fault Tolerance for
Lookup Service

+ To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

In the pred() reply message, node A can send its k-1
successors to its predecessor B

Upon receiving pred() message, B can update its
successor list by concatenating the successor list
received from A with its own list

If k = log(M), lookup operation works with high
probability even if half of nodes fail, where M is number
of nodes in the system
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Storage Fault Tolerance

+ Replicate tuples on
successor nodes

- Example: replicate
(K14, V14) on
nodes 20 and 32

. 35
~ @‘_‘~~@ .-
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Storage Fault Tolerance

» If node 15 fails, no
reconfiguration
needed /

— Still have two !
replicas

— All lookups will be
correctly routed
\
* Willneedtoadda '
new replica on
node 35

1
1
1
1
1
1

\

. 35
~ E‘-__@ -
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Iterative vs. Recursive Lookup

58 4
* lteratively: 8
— Example: node 40
; 50
issue query(31) 15
40
58 g 35 2 B
8
+ Recursively 50 15
— Example: node 40
issue query(31)
40
32
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Conclusions: Chord

+ Highly scalable distributed lookup protocol

+ Each node needs to know about O(log(M)), where m is
the total number of nodes

+ Guarantees that a tuple is found in O(log(M)) steps

+ Highly resilient: works with high probability even if half of
nodes fail

312 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 14.51

Page 13

Conclusions: Key Value Store

*+ Very large scale storage systems
» Two operations

— put(key, value)

— value = get(key)
+ Challenges

— Fault Tolerance - replication

— Scalability - serve get()’s in parallel; replicate/cache hot
tuples

— Consistency > quorum consensus to improve put()
performance
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