
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 13  
 

File Systems, Naming,  
Directories, and Caching"

 March 5, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

13.2!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Magnetic Disk Characteristic"
•  Cylinder: all the tracks under the  

head at a given point on all surface!
•  Read/write data is a three-stage  

process:!
– Seek time: position the head/arm over the proper track (into

proper cylinder)!
– Rotational latency: wait for the desired sector 

to rotate under the read/write head!
– Transfer time: transfer a block of bits (sector) 

under the read-write head!
•  Disk Latency = Queuing Time + Controller time + 

!Seek Time + Rotation Time + Xfer Time!

•  Highest Bandwidth: !
–  transfer large group of blocks sequentially from one track!

Sector"
Track"

Cylinder"
Head"

Platter"

Software"
Queue"

(Device Driver)"

H
ardw

are"
C

ontroller"
 Media Time"

(Seek+Rot+Xfer)"

R
equest"

R
esult"

13.3!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Goals for Today"

•  Finish SSD discussion!

•  Important System Properties!

•  File Systems!
– Structure, Naming, Directories, Caching!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

13.4!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Solid State Disks (SSDs)"

•  NAND Flash!
– Sector addressable, but stores 4-64 “sectors” per

memory page!
– No moving parts (no rotate/seek motors)!
– Very low power and lightweight !

•  Reading data similar to memory read (25µs)!
– No seek or rotational latency!
– Transfer time: transfer a block of bits (sector)!

»  Limited by controller and disk interface (SATA:
300-600MB/s)!

– Disk Latency = Queuing Time + Controller time + Xfer
Time!

– Highest Bandwidth: Sequential OR Random reads!

Page 2

13.5!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: SSD Architecture – Writes"

•  Writing data is complex! (~200µs – 1.7ms)!
– No seek or rotational latency, Xfer time: transfer a sector!

•  But, can only write empty pages (erase takes ~1.5ms!)!
– Controller maintains pool of empty pages by coalescing used

sectors (read, erase, write), also reserve some % of capacity!
•  Typical steady state behavior when SSD is almost full

– One erase every 64 or 128 writes (depending on page size)!
•  Write and erase cycles require “high” voltage!

– Damages memory cells, limits SSD lifespan!
– Controller uses ECC, performs wear leveling!
– OS may provide TRIM information about “deleted” sectors!

•  Result is very workload dependent performance!
– Disk Latency = Queuing Time + Controller time (Find Free

Block) + Xfer Time!
– Highest BW: Seq. OR Random writes (limited by empty pages)!

»  Sequential easier to implement since can write all data to same pg!Rule	 of	 thumb:	 writes	 10x	 more	 expensive	 than	 reads,	 	
and	 erases	 10x	 more	 expensive	 than	 writes	 13.6!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Drive Health: SMART"

•  Self-Monitoring, Analysis and Reporting Technology!
– Drive reports on its own health!

13.7!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Storage Performance & Price"

Bandwidth
(sequential R/W)

Cost/GB Size

HHD 50-100 MB/s $0.05-0.1/GB 2-4 TB

SSD1 200-500 MB/s
(SATA)
6 GB/s (PCI)

$1.5-5/GB 200GB-1TB

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

7

BW:	 SSD	 up	 to	 x10	 than	 HDD,	 DRAM	 >	 x10	 than	 SSD	
Price:	 HDD	 x30	 less	 than	 SSD,	 SSD	 x4	 less	 than	 DRAM	 	 	 	

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/ !

13.8!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Is 2012 the Tipping Point for SSDs?"

Page 3

13.9!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

SSD Summary"

•  Pros (vs. magnetic disk drives):!
– Low latency, high throughput (eliminate seek/rotational delay)!
– No moving parts: !

»  Very light weight, low power, silent, very shock insensitive!
– Read at memory speeds (limited by controller and I/O bus)!

•  Cons!
– Small storage (0.1-0.5x disk), very expensive (30x disk)!

» Hybrid alternative: combine small SSD with large HDD!
– Asymmetric block write performance: read pg/erase/write pg!

» Controller GC algorithms have major effect on performance!
»  Sequential write performance may be worse than HDD!

– Limited drive lifetime (NOR is higher, more expensive)!
»  50-100K writes/page for SLC, 1-10K writes/page for MLC!

13.10!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Important “ilities”"
•  Availability: the probability that the system can accept and

process requests!
– Often measured in “nines” of probability. So, a 99.9% probability

is considered “3-nines of availability”!
– Key idea here is independence of failures!

•  Durability: the ability of a system to recover data despite faults!
– This idea is fault tolerance applied to data!

•  Durability doesnʼt imply Availability!
–  Information on pyramids was very durable, but could not be

accessed until discovery of Rosetta Stone!
•  Reliability: the ability of a system or component to perform its

required functions under stated conditions for a specified
period of time (IEEE definition)!

– Usually stronger than simply availability: means that the system
is not only “up”, but also working correctly!

–  Includes availability, security, fault tolerance/durability!
– Must make sure data survives system crashes, disk crashes,

other problems!

13.11!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Building a File System"
•  File System: Layer of OS that transforms block interface of

disks (or other block devices) into Files, Directories, etc.!

•  File System Components!
– Disk Management: collecting disk blocks into files!
– Naming: Interface to find files by name, not by blocks!
– Protection: Layers to keep data secure!
– Reliability/Durability: Keeping of files durable despite crashes,

media failures, attacks, etc.!
•  User vs. System View of a File!

– Userʼs view: !
» Durable Data Structures!

– Systemʼs view (system call interface):!
» Collection of Bytes (UNIX)!
» Doesnʼt matter to system what kind of data structures you want to

store on disk!!
– Systemʼs view (inside OS):!

» Collection of blocks (a block is a logical transfer unit, while a sector
is the physical transfer unit)!

»  Block size ≥ sector size; in UNIX, block size is 4KB!
13.12!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Translating from User to System View"

•  What happens if user says: give me bytes 2—12?!
– Fetch block corresponding to those bytes!
– Return just the correct portion of the block!

•  What about: write bytes 2—12?!
– Fetch block!
– Modify portion!
– Write out Block!

•  Everything inside File System is in whole size blocks!
– For example, getc(), putc() ⇒ buffers something like

4096 bytes, even if interface is one byte at a time!
•  From now on, file is a collection of blocks!

File!
System!

Page 4

13.13!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Disk Management Policies"
•  Basic entities on a disk:!

– File: user-visible group of blocks arranged sequentially in
logical space!

– Directory: user-visible index mapping names to files!

•  Access disk as linear array of sectors. !
– Logical Block Addressing (LBA): Every sector has integer

address from zero up to max number of sectors.!
– Controller translates from address ⇒ physical position!

»  First case: OS/BIOS must deal with bad sectors!
»  Second case: hardware shields OS from structure of disk!

•  Need way to track free disk blocks!
– Link free blocks together ⇒ too slow today!
– Use bitmap to represent free space on disk!

•  Need way to structure files: File Header!
– Track which blocks belong at which offsets within the logical file

structure!

•  Optimize placement of filesʼ disk blocks to match access and
usage patterns!

13.14!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Designing the File System: Access Patterns"
•  How do users access files?!

– Need to know type of access patterns user is likely to throw at
system!

•  Sequential Access: bytes read in order (“give me the next X
bytes, then give me next, etc.”)!

– Almost all file access are of this flavor!
•  Random Access: read/write element out of middle of array

(“give me bytes i—j”)!
– Less frequent, but still important. For example, virtual memory

backing file: page of memory stored in file!
– Want this to be fast – donʼt want to have to read all bytes to get

to the middle of the file!
•  Content-based Access: (“find me 100 bytes starting with

JOSEPH”)!
– Example: employee records – once you find the bytes, increase

my salary by a factor of 2!
– Many systems donʼt provide this; instead, build DBs on top of

disk access to index content (requires efficient random access)!
– Example: Mac OSX Spotlight search (do we need directories?)!

13.15!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Designing the File System: Usage Patterns"
•  Most files are small (for example, .login, .c, .java files)!

– A few files are big – executables, .jar, core files, etc.; the .jar is
as big as all of your .class files combined!

– However, most files are small – .classʼs, .oʼs, .cʼs, etc.!
•  Large files use up most of the disk space and bandwidth to/

from disk!
– May seem contradictory, but a few enormous files are

equivalent to an immense # of small files !
•  Although we will use these observations, beware usage

patterns:!
– Good idea to look at usage patterns: beat competitors by

optimizing for frequent patterns!
– Except: changes in performance or cost can alter usage

patterns. Maybe UNIX has lots of small files because big files
are really inefficient?!

•  File System Goals:!
– Maximize sequential performance!
– Easy random access to file!
– Easy management of file (growth, truncation, etc)!

13.16!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Linked Allocation: File-Allocation Table (FAT)"

•  MSDOS links pages together to create a file!
– Links not in pages, but in the File Allocation Table (FAT)!

»  FAT contains an entry for each block on the disk!
»  FAT Entries corresponding to blocks of file linked together!

– Access properties:!
»  Sequential access expensive unless FAT cached in memory!
» Random access expensive always, but really expensive if FAT not

cached in memory!

Page 5

13.17!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Multilevel Indexed Files (UNIX 4.1) "
•  Multilevel Indexed Files:  

 (from UNIX 4.1 BSD)!
– Key idea: efficient for small  

files, but still allow big files!

•  File hdr contains 13 pointers !
– Fixed size table, pointers not all equivalent!
– This header is called an “inode” in UNIX!

•  File Header format:!
– First 10 pointers are to data blocks!
– Ptr 11 points to “indirect block” containing 256 block ptrs!
– Pointer 12 points to “doubly indirect block” containing 256

indirect block ptrs for total of 64K blocks!
– Pointer 13 points to a triply indirect block (16M blocks)!

13.18!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Multilevel Indexed Files (UNIX 4.1): Discussion "

•  Basic technique places an upper limit on file size that is
approximately 16Gbytes!

– Designers thought this was bigger than anything anyone
would need. Much bigger than a disk at the time…!

– Fallacy: today, EOS producing 2TB of data per day!

•  Pointers get filled in dynamically: need to allocate indirect
block only when file grows > 10 blocks !

– On small files, no indirection needed!

13.19!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example of Multilevel Indexed Files"
•  Sample file in multilevel  

indexed format:!
– How many accesses for  

block #23? (assume file  
header accessed on open)?!

»  Two: One for indirect block,  
one for data!

– How about block #5?!
» One: One for data!

– Block #340?!
»  Three: double indirect block,  

indirect block, and data!
•  UNIX 4.1 Pros and cons!

– Pros: !Simple (more or less) 
!Files can easily expand (up to a point) 
!Small files particularly cheap and easy!

– Cons: !Lots of seeks 
!Very large files must read many indirect blocks (four 

 !I/Oʼs per block!)!
! 13.20!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Administrivia"

•  Midterm Wednesday 3/7 at 5-6:30PM in 10 Evans!
•  Closed-book, 1 double-sided page of handwritten notes!
•  Covers lectures/readings #1-12 (Wed 3/1) and project one!
•  Midterm review session today 7-9PM in 141 McCone!

Page 6

13.21!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

13.22!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

UNIX BSD 4.2"
•  Same as BSD 4.1 (same file header and triply indirect

blocks), except incorporated ideas from Cray-1 DEMOS:!
– Uses bitmap allocation in place of freelist!
– Attempt to allocate files contiguously!
– 10% reserved disk space (mentioned next slide)!
– Skip-sector positioning (mentioned in two slides)!

•  Problem: When create a file, donʼt know how big it will
become (in UNIX, most writes are by appending)!

– How much contiguous space do you allocate for a file?!
–  In BSD 4.2, just find some range of free blocks!

»  Put each new file at the front of different range!
»  To expand a file, you first try successive blocks in bitmap, then

choose new range of blocks!
– Also in BSD 4.2: store files from same directory near each

other!
•  Fast File System (FFS)!

– Allocation and placement policies for BSD 4.2!

13.23!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How to Deal with Full Disks?"
•  In many systems, disks are always full!

– EECS department growth: 300 GB to 1TB in a year!
»  Thatʼs 2GB/day! (Now at 65+50 TB!)!

– How to fix? Announce that disk space is getting low, so please
delete files?!

» Donʼt really work: people try to store their data faster!
– Sidebar: Perhaps we are getting out of this mode with new

disks… However, letʼs assume disks are full for now!
•  Solution:!

– Donʼt let disks get completely full: reserve portion!
»  Free count = # blocks free in bitmap!
»  Scheme: Donʼt allocate data if count < reserve!

– How much reserve do you need?!
»  In practice, 10% seems like enough!

– Tradeoff: pay for more disk, get contiguous allocation!
»  Since seeks so expensive for performance, this is a very good

tradeoff!
13.24!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Attack of the Rotational Delay"
•  Problem 2: Missing blocks due to rotational delay!

–  Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! Need
1 revolution/block!!

– Solution1: Skip sector positioning (“interleaving”)!
»  Place the blocks from one file on every other block of a track: give

time for processing to overlap rotation!
– Solution2: Read ahead: read next block right after first, even if

application hasnʼt asked for it yet.!
»  This can be done either by OS (read ahead) !
»  By disk itself (track buffers). Many disk controllers have internal

RAM that allows them to read a complete track!
•  Important Aside: Modern disks+controllers do many complex

things “under the covers”!
– Track buffers, elevator algorithms, bad block filtering!

Skip Sector!

Track Buffer!
(Holds complete track)!

Page 7

13.25!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How do we actually access files?"
•  All information about a file contained in its file header!

– UNIX calls this an “inode”!
»  Inodes are global resources identified by index (“inumber”)!

– Once you load the header structure, all the other blocks of the file
are locatable!

•  Question: how does the user ask for a particular file?!
– One option: user specifies an inode by a number (index).!

»  Imagine: open(“14553344”)!
– Better option: specify by textual name!

» Have to map name→inumber!
– Another option: Icon!

»  This is how Apple made its money. Graphical user interfaces. Point
to a file and click.!

•  Naming: The process by which a system translates from user-
visible names to system resources!

–  In the case of files, need to translate from strings (textual names)
or icons to inumbers/inodes!

– For global file systems, data may be spread over globe⇒need to
translate from strings or icons to some combination of physical
server location and inumber !

13.26!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Directories"
•  Directory: a relation used for naming!

– Just a table of (file name, inumber) pairs!

•  How are directories constructed?!
– Directories often stored in files!

» Reuse of existing mechanism!
» Directory named by inode/inumber like other files!

– Needs to be quickly searchable!
» Options: Simple list or Hashtable!
» Can be cached into memory in easier form to search!

•  How are directories modified?!
– Originally, direct read/write of special file!
– System calls for manipulation: mkdir, rmdir
– Ties to file creation/destruction!

» On creating a file by name, new inode grabbed and associated
with new file in particular directory!

13.27!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Directory Organization"

•  Directories organized into a hierarchical structure!
– Seems standard, but in early 70ʼs it wasnʼt!
– Permits much easier organization of data structures!

•  Entries in directory can be either files or directories!

•  Files named by ordered set (e.g., /programs/p/list)!

13.28!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Directory Structure"

•  Not really a hierarchy!!
– Many systems allow directory structure to be organized as an

acyclic graph or even a (potentially) cyclic graph!
– Hard Links: different names for the same file!

» Multiple directory entries point at the same file!
– Soft Links: “shortcut” pointers to other files!

»  Implemented by storing the logical name of actual file!
•  Name Resolution: The process of converting a logical name

into a physical resource (like a file)!
– Traverse succession of directories until reach target file!
– Global file system: May be spread across the network!

Page 8

13.29!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Directory Structure (Conʼt)"
•  How many disk accesses to resolve “/my/book/count”?!

– Read in file header for root (fixed spot on disk)!
– Read in first data block for root!

»  Table of file name/index pairs. Search linearly – ok since
directories typically very small!

– Read in file header for “my”!
– Read in first data block for “my”; search for “book”!
– Read in file header for “book”!
– Read in first data block for “book”; search for “count”!
– Read in file header for “count”!

•  Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names!

– Allows user to specify relative filename instead of absolute path
(say CWD=“/my/book” can resolve “count”)!

13.30!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Where are inodes stored?"

•  In early UNIX and DOS/Windowsʼ FAT file system,
headers stored in special array in outermost cylinders!

– Header not stored anywhere near the data blocks. To
read a small file, seek to get header, seek back to data.!

– Fixed size, set when disk is formatted. At formatting
time, a fixed number of inodes were created (They were
each given a unique number, called an “inumber”)!

13.31!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Where are inodes stored?"
•  Later versions of UNIX moved the header information

to be closer to the data blocks!
– Often, inode for file stored in same “cylinder group” as

parent directory of the file (makes an ls of that directory
run fast).!

– Pros: !
» UNIX BSD 4.2 puts a portion of the file header array on

each cylinder. For small directories, can fit all data, file
headers, etc. in same cylinder ⇒ no seeks!!

»  File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from disk at
same time!

» Reliability: whatever happens to the disk, you can find
many of the files (even if directories disconnected)!

– Part of the Fast File System (FFS)!
» General optimization to avoid seeks!

13.32!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  Open system call:!
– Resolves file name, finds file control block (inode)!
– Makes entries in per-process and system-wide tables!
– Returns index (called “file handle”) in open-file table!

•  Read/write system calls:!
– Use file handle to locate inode!
– Perform appropriate reads or writes !

In-Memory File System Structures"

Page 9

13.33!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

File System Caching"
•  Key Idea: Exploit locality by caching data in memory!

– Name translations: Mapping from paths→inodes!
– Disk blocks: Mapping from block address→disk content !!

•  Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations!

– Can contain “dirty” blocks (blocks yet on disk)!
•  Replacement policy? Least Recently Used (LRU)!

– Can afford overhead of timestamps for each disk block!
– Advantages:!

» Works very well for name translation!
» Works well in general as long as memory is big enough to

accommodate a hostʼs working set of files.!
– Disadvantages:!

»  Fails when some application scans through file system, thereby
flushing the cache with data used only once!

»  Example: find . –exec grep foo {} \;
•  Other Replacement Policies?!

– Some systems allow applications to request other policies!
– Example, ‘Use Once’:!

»  File system can discard blocks as soon as they are used!
13.34!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

File System Caching (contʼd)"
•  Cache Size: How much memory should the OS allocate to the

buffer cache vs virtual memory?!
– Too much memory to the file system cache ⇒ wonʼt be able to

run many applications at once!
– Too little memory to file system cache ⇒ many applications may

run slowly (disk caching not effective)!
– Solution: adjust boundary dynamically so that the disk access

rates for paging and file access are balanced!
•  Read Ahead Prefetching: fetch sequential blocks early!

– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)!

– Elevator algorithm can efficiently interleave groups of prefetches
from concurrent applications!

– How much to prefetch?!
»  Too many imposes delays on requests by other applications!
»  Too few causes many seeks (and rotational delays) among

concurrent file requests!

13.35!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

File System Caching (contʼd)"
•  Delayed Writes: Writes to files not immediately sent out to

disk!
–  Instead, write() copies data from user space buffer to kernel

buffer (in cache)!
»  Enabled by presence of buffer cache: can leave written file

blocks in cache for a while!
»  If some other application tries to read data before written to disk,

file system will read from cache !
– Flushed to disk periodically (e.g. in UNIX, every 30 sec)!
– Advantages: !

» Disk scheduler can efficiently order lots of requests!
» Disk allocation algorithm can be run with correct size value for a

file!
»  Some files need never get written to disk! (e..g temporary scratch

files written /tmp often donʼt exist for 30 sec)!
– Disadvantages!

» What if system crashes before file has been written out?!
» Worse yet, what if system crashes before a directory file has

been written out? (lose pointer to inode!)!
13.36!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How to make file system durable?"
•  Disk blocks contain Reed-Solomon error correcting codes

(ECC) to deal with small defects in disk drive!
– Can allow recovery of data from small media defects !

•  Make sure writes survive in short term!
– Either abandon delayed writes or!
– use special, battery-backed RAM (called non-volatile RAM or

NVRAM) for dirty blocks in buffer cache.!
•  Make sure that data survives in long term!

– Need to replicate! More than one copy of data!!
–  Important element: independence of failure!

» Could put copies on one disk, but if disk head fails…!
» Could put copies on different disks, but if server fails…!
» Could put copies on different servers, but if building is struck by

lightning…. !
» Could put copies on servers in different continents…!

•  RAID: Redundant Arrays of Inexpensive Disks!
– Data stored on multiple disks (redundancy)!
– Either in software or hardware!

»  In hardware case, done by disk controller; file system may not even
know that there is more than one disk in use!

Page 10

13.37!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Log Structured and Journaled File Systems"
•  Better reliability through use of log!

– All changes are treated as transactions !
– A transaction is committed once it is written to the log!

» Data forced to disk for reliability!
»  Process can be accelerated with NVRAM!

– Although File system may not be updated immediately, data
preserved in the log!

•  Difference between “Log Structured” and “Journaled”!
–  In a Log Structured file system, data stays in log form!
–  In a Journaled file system, Log used for recovery!

•  For Journaled system:!
– Log used to asynchronously update filesystem!

»  Log entries removed after used!
– After crash:!

» Remaining transactions in the log performed (“Redo”)!
» Modifications done in way that can survive crashes!

•  Examples of Journaled File Systems: !
– Ext3 (Linux), XFS (Unix), HDFS (Mac), NTFS (Windows), etc.!

13.38!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary (1/2)"

•  Important system properties!
– Availability: how often is the resource available?!
– Durability: how well is data preserved against faults?!
– Reliability: how often is resource performing correctly?!

•  File System:!
– Transforms blocks into Files and Directories!
– Optimize for access and usage patterns!
– Maximize sequential access, allow efficient random access!

•  File (and directory) defined by header!
– Called “inode” with index called “inumber”!

•  Multilevel Indexed Scheme!
–  Inode contains file info, direct pointers to blocks, !
–  indirect blocks, doubly indirect, etc..!

!

13.39!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary (2/2)"
•  4.2 BSD Multilevel index files!

–  Inode contains pointers to actual blocks, indirect blocks, double
indirect blocks, etc. !

– Optimizations for sequential access: start new files in open
ranges of free blocks, rotational Optimization!

•  Naming: act of translating from user-visible names to actual
system resources!

– Directories used for naming for local file systems!

•  Buffer cache used to increase file system performance!
– Read Ahead Prefetching and Delayed Writes!

13.40!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How to organize files on disk"
•  Goals:!

– Maximize sequential performance!
– Easy random access to file!
– Easy management of file (growth, truncation, etc)!

•  First Technique: Continuous Allocation!
– Use continuous range of blocks in logical block space!

»  Analogous to base+bounds in virtual memory!
» User says in advance how big file will be (disadvantage)!

– Search bit-map for space using best fit/first fit!
» What if not enough contiguous space for new file?!

– File Header Contains:!
»  First block/LBA in file!
»  File size (# of blocks)!

– Pros: Fast Sequential Access, Easy Random access!
– Cons: External Fragmentation/Hard to grow files!

»  Free holes get smaller and smaller!
» Could compact space, but that would be really expensive!

•  Continuous Allocation used by IBM 360!
– Result of allocation and management cost: People would

create a big file, put their file at the start!

Page 11

13.41!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

File Allocation for Cray-1 DEMOS"

•  DEMOS: File system structure similar to segmentation!
–  Idea: reduce disk seeks by !

»  using contiguous allocation in normal case!
»  but allow flexibility to have non-contiguous allocation!

– Cray-1 had 12ns cycle time, so CPU:disk speed ratio about the
same as today (a few million instructions per seek)!

•  Header: table of base & size (10 “block group” pointers)!
– Each block chunk is a contiguous group of disk blocks!
– Sequential reads within a block chunk can proceed at high speed

– similar to continuous allocation!
•  How do you find an available block group? !

– Use freelist bitmap to find block of 0ʼs. !

base!size!

file header!

1,3,2!
1,3,3!
1,3,4!
1,3,5!
1,3,6!
1,3,7!
1,3,8!
1,3,9!

disk group!

Basic Segmentation Structure: !
Each segment contiguous on disk!

13.42!3/5/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Large File Version of DEMOS"

•  What if need much bigger files?!
–  If need more than 10 groups, set flag in header: BIGFILE!

»  Each table entry now points to an indirect block group!
– Suppose 1000 blocks in a block group ⇒ 80GB max file!

»  Assuming 8KB blocks, 8byte entries⇒ 
(10 ptrs×1024 groups/ptr×1000 blocks/group)*8K =80GB!

•  Discussion of DEMOS scheme!
– Pros: !Fast sequential access, Free areas merge simply 

!Easy to find free block groups (when disk not full)!
– Cons: !Disk full ⇒ No long runs of blocks (fragmentation), 

 !so high overhead allocation/access ! !
– Full disk ⇒ worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed) !

file header!

base!size! 1,3,2!
1,3,3!
1,3,4!
1,3,5!
1,3,6!
1,3,7!
1,3,8!
1,3,9!

disk group!base!size!

indirect!
block group!

