CS162
Operating Systems and
Systems Programming

Lecture 12

Kernel/User, I/0, Disks

February 29, 2012
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Review: Example of General Address Translation

Code \:".". | Code
Data :' . Stack 1 Data
Heap > . Heap 1 Heap
Stack PG ! Stack
Prog 1 R Prog 2
Virtual i Satey Virtual
Address Vg Address
Space 1 had Space 2
[OS code
Translation Map 1 OS data Translation Map 2
OS heap &
Stacks
Physical Address Space
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.3

Page 1

Goals for Today

+ Dual Mode Operation: Kernel versus User Mode
+ 1/0O Systems

— Hardware Access

— Device Drivers
+ Disk Performance

— Hardware performance parameters

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.2

Dual-Mode Operation

+ Can an application modify its own translation maps?
— If it could, could get access to all of physical memory
— Has to be restricted somehow

+ To assist with protection, hardware provides at least two
modes (Dual-Mode Operation):
— “Kernel” mode (or “supervisor” or “protected”)
—“User” mode (Normal program mode)

— Mode set with bits in special control register only accessible
in kernel-mode

+ Intel processors actually have four “rings” of protection:
— PL (Privilege Level) from 0 -3
» PLO has full access, PL3 has least

— Typical OS kernels on Intel processors only use PLO
(“kernel”) and PL3 (“user”)

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.4

For Protection, Lock User-Programs in Asylum

+ Idea: Lock user programs in padded cell
with no exit or sharp objects
— Cannot change mode to kernel mode
— User cannot modify translation maps
— Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to
memory-mapped I/O operations

— What else needs to be protected?

+ A couple of issues
— How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are the
same person. How do you manage this???

— How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell
» User— OS (user — kernel mode): getting out of cell

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 125

How to get from Kernel—User

+ What does the kernel do to create a new user process?
— Allocate and initialize process control block
— Read program off disk and store in memory
— Allocate and initialize translation map
» Point at code in memory so program can execute
» Possibly point at statically initialized data
— Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
* How does kernel switch between processes?
— Same saving/restoring of registers as before
— Save/restore hardware pointer to translation map

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.6

User—Kernel (System Call)

+ Can'’t letinmate (user) get out of padded cell on own
— Would defeat purpose of protection!
— So, how does the user program get back into kernel?

user process

(.
I/O: open, close, read, write, Iseek
| user process execuing [— cats syse| - Files: delete, mkdir, rmdir, chown
‘ Process: fork, exit, join
ray
ouel mode| Network: socket create, select

yd | |

all into kernel
ernel transition

L

+ System call: Voluntary proce,
— Hardware for controlled Us
— Can any kernel routine be,
» No! Only specific ones
— System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.7

System Call (cont’d)

+ Are system calls constant across operating systems?
— Not entirely, but there are lots of commonalities
— Also some standardization attempts (POSIX)

+ What happens at beginning of system call?
— On entry to kernel, sets system to kernel mode
— Handler address fetched from table, and Handler started

+ System Call argument passing:
— In registers (not very much can be passed)
— Write into user memory, kernel copies into kernel memory
— Every argument must be explicitly checked!

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.8

2/29/2012

User—Kernel (Exceptions: Traps and Interrupts)

A system call instruction causes a synchronous exception
(or “trap”)
— In fact, often called a software “trap” instruction

Other sources of Synchronous Exceptions:
— Divide by zero, lllegal instruction, Bus error (bad address, e.g.
unaligned access)

— Segmentation Fault (address out of range)
— Page Fault (for illusion of infinite-sized memory)

Interrupts are Asynchronous Exceptions
— Examples: timer, disk ready, network, etc....
— Interrupts can be disabled, traps cannot!

SUMMARY - On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel

— For some processors (x86), processor also saves registers,
changes stack, etc.
Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.9

2/29/2012

Modern I/0 Systems

{disk)
s
@
&=

R
7

SCSI bus

@

PO
cache disk)

bridge/memory | SCS| controller
controller /4
WiLili1g :
-)

PCl bus

graphics
controller

T
SIS T Gy
N

keyboard _\E‘gﬁ“%m\u %

—~expansion bus——

expansion bus

IDE disk controller
interface

parallel serial -

Anthony D. Joseph and lon Stoica CS162 ©UCB Sprifig 2012 12.11

Page 3

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in “Coprocessor 0”

—Use mfc0 to read contents of these registers:
» BadVAddr (register 8): contains memory address at which memory
reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction
15 8 543210
Mask | |k|e Ikle Ikle |
old prev cur

Status

- Status Register fields:
— Mask: Interrupt enable
» 1 bit for each of 5 hardware and 3 software interrupts
—k = kernel/user: 0=kernel mode
— e = interrupt enable: O=sinterrupts disabled
— Exception=6 LSB shifted left 2 bits, setting 2 LSB to 0:
» run in kernel mode with interrupts disabled
Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

2/29/2012 12.10

The Requirements of I/0

+ What is the role of 1/0?
— Without I/0, computers are useless (disembodied brains?)
— But... thousands of devices, each slightly different
» How can we standardize the interfaces to these devices?
— Devices unreliable: media failures and transmission errors
» How can we make them reliable???
— Devices unpredictable and/or slow
» How can we manage them if we don’t know what they will do or
how they will perform?
+ Some operational parameters:
— Byte/Block
» Some devices provide single byte at a time (e.g., keyboard)
» Others provide whole blocks (e.g., disks, networks, etc.)
— Sequential/Random
» Some devices must be accessed sequentially (e.g., tape)
» Others can be accessed randomly (e.g., disk, cd, etc.)
— Polling/Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.12

Example Device-Transfer Rates (Sun Enterprise 6000)

gigaplane
bus

SBUS

SCSI bus

fast
ethernet

hard disk

ethernet

laser
printer

modem

mouse

keyboard

I L | I |
0 0.01 0.1 1 10 100

7
000 |

S &
8 SS
» Device Rates vary over many orders of magnitude

— System better be able to handle this wide range
— Better not have high overhead/byte for fast devices!

— Better not waste time waiting for slow devices
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.13

Want Standard Interfaces to Devices

+ Block Devices: e.g., disk drives, tape drives, DVD-ROM
— Access blocks of data
— Commands include open (), read (), write(), seek()
— Raw I/O or file-system access
— Memory-mapped file access possible

+ Character Devices: e.g., keyboards, mice, serial ports, some
USB devices

— Single characters at a time
— Commands include get (), put ()
— Libraries layered on top allow line editing
+ Network Devices: e.g., Ethernet, Wireless, Bluetooth
— Different enough from block/character to have own interface
— Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select () functionality

— Usage: pipes, FIFOs, streams, queues, mailboxes

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.15

Page 4

The Goal of the I/O Subsystem

+ Provide uniform interfaces, despite wide range of different
devices

— This code works on many different devices:
FILE fd = fopen (“/dev/something”, “rw”) ;
for (int 1 = 0; 1 < 10; i++) {
fprintf (£d, “Count %d\n”,1i);
}
close (fd) ;

— Why? Because code that controls devices (“device driver”)
implements standard interface.

+ We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture

— Can only scratch surface!

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.14

How Does User Deal with Timing?

« Blocking Interface: “Wait”

— When request data (e.g., read () system call), put process to
sleep until data is ready

— When write data (e.g., write () system call), put process to
sleep until device is ready for data

+ Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of bytes
successfully transferred to kernel

— Read may return nothing, write may write nothing
+ Asynchronous Interface: “Tell Me Later”

— When requesting data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

— When sending data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.16

How does the processor actually talk to the device?

Processor Memory Bus Regular
Memory

Bus
Adaptol

=

=
Controller S|

Other Devices Adg’ess"
ata
Interrupt or Buses Inttl-:?#:ce cH:arc?[w‘?:re
Controller Interrupt Request ontroller
. . reac Addressable
« CPU interacts with a Controller [Gontrol] Memory

— Contains a set of registers that [status | and/or

can be read and written hed ey | Queves
— May contain memory for request Memo Ma&)ed
queues or bit-mapped images Region: 0x8f008020

+ Regardless of the complexity of the connections and buses,
processor accesses registers in two ways:
— 1/0 instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL
— Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space

» /0O accomplished with load and store instructions
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 1217

Example: Memory-Mapped Display Controller

» Memory-Mapped:
— Hardware maps control registers and

display memory into physical address 0x80020000 [2 ohics
space Command
» Addresses set by hardware jumpers or Queue
programming at boot time
0x80010000
. . . Display
— Simply writing to display memory (also
called the “frame buffer”) changes Memory
image on screen 0x8000F000

» Addr: 0x8000F000—0x8000FFFF
— Writing graphics description to
command-queue area
» Say enter a set of triangles that describe
some scene
» Addr: 0x80010000—0x8001FFFF
— Writing to the command register may

0x0007F004 |[Command
0x0007F000 | Status

cause on-board graphics hardware to do
something
» Say render the above scene Physical Address
» Addr: 0x0007F004 ~ L Space
c ith add lati ="
2/29?221gr0ted WItAntﬁonyII)e.SJgsy;;%gﬁdalgLoSrgoica Cs162 ©Ump-nng/2012 12.19

Page 5

Intel Cougar Point chipset (Sandy Bridge CPUSs)

7

PCI Express* 2.0
Graphics Intel*
HD Graphics’|

Digital display: HOMI*, DVI,
DisplayPort* (including eDP).
Lossless digital audio*

14 Hi-Speed USB 2.0 Ports;
Dual EHCI; USB Port Disable
~ 6 Serial ATA Ports; eSATA;
Intel” Integrated e
10/100/1000 MAC Port Disable

intel” High
Definition Audio

8 PCI Express* 2.0

g
5

Intel* Rapid
-
-
J/
Intel® H67 Express Chipset Platform Block Diagram
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.18

Transferring Data To/From Controller

+ Programmed I/O:
— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size
+ Direct Memory Access:
— Give controller access to memory bus
— Ask it to transfer data to/from memory directly
+ Sample interaction with DMA controller (from book):

1. device driver is told
to transfer disk data CPU
to buffer at address X

5. DMA controller 2. device driver tells

transfers bytes to disk controller to

buffer X, increasing transfer C bytes

memory address from disk to buffer -
and decreasing C at address X

untilC =0
DMA/bus/
6. when C = 0, DMA ; T ; X
! ’ . interrupt ;= CPU memory bus —| memory | buffer
:P;rsr'ue;ils CPU to signal il -
} | L PCI b)
‘ 3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends
each byte to DMA
@GisR @ik controller
7
2/29/2012 >T\ 12.20
disk) @isk

Administrivia

+ Please fill the anonymous course survey at
https://www.surveymonkey.com/s/DZ5Y8XM

+ We’'ll make changes this semester based on your feedback

+ Project 2 Design Doc due Thursday 3/1 at 11:59PM

+ Midterm next Wednesday 3/7 at 5-6:30PM in 10 Evans
+ Closed-book, 1 double-sided page of handwritten notes
» Covers lectures/readings #1-12 (Wed 3/1) and project one
» Midterm review session: Monday 3/5 7-9PM in 141 McCone

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.21

A Kernel I/0 Structure

Device-specific kernel
code supporting
common API with

ioctl() extensions AJem

software

mouse ‘ PCl bus floppy ATAPI

SC
device i device device device
driver Interrupt routine for driver driver driver

processing 1/0

SCS|_- T mouse PCl bus floppy ATAPI
device device device (XX device device device
° controller | controller | controller controller | controller | controller
3
S0 R T R R
1=
2 ATAPI
scsl floppy- | | devices
devices | |Keyboard| | mouse eoe PCl bus disk (dlisks,
drives tapes,
drives)
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.23

Page 6

5min Break

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.22

Device Drivers

+ Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
— Supports a standard, internal interface
— Same kernel I/0 system can interact easily with different
device drivers
— Special device-specific configuration supported with the
ioctl () system call
+ Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like open (),
close (), read(), write(), ioctl (), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/0 to device, may put thread to sleep until
finished
— Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.24

Life Cycle of An I/O Request I/0 Device Notifying the OS
User) » The OS needs to know when:
S precess koo —The I/O device has completed an operation
Program b —The I/O operation has encountered an error
retum from system call
.. P - /O |nterrupt;
ot | taterts —Device generates an interrupt whenever it needs service
Kernel I/O = o —Handled in bottom half of device driver
Subsvstem » Often run on special kernel-level stack
Y s iosors o —Pro: handles unpredictable events well
S o suwsysiem —Con: interrupts relatively high overhead
.. T T Tt T LI L [T I T RETTTTCTT PR . Po”'ng
Device Driver "é‘nm“:a“?w“{."g wice | ot paks st —OS periodically checks a device-specific status register
Top Half St T e » /0 device puts completion information in status register
.. | FO » Could use timer to invoke lower half of drivers occasionally
Device Driver B U= P = —Pro: low overhead N
Bottom Half et et e —Con: may waste many cycles on polling if infrequent or
1 unpredictable /O operations
.................. ... d.e ;‘:e. uE\INP} ACtual deVICeS COmbIne bOth pO”Ing and Intel’l’uptS
Device i) Sl Jocmpes —For instance — High-bandwidth network adapter:
Hardware ki » Interrupt for first incoming packet
. > » Poll for following packets until hardware queues are empty
2/29/2012 Anthony D. Joseph 12.25 2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.26
I/0O Performance Hard Disk Drives
Response Cover Mounting Holes
300 | R over not shown
o Time (ms) N © o)
9 sea Canting
User E" Vo 200 Spindle
Thread o device
Queue § Slider (and Head)
[0S Paths] 100 pr—
Response Time = Queue + I/O device service time Acteatar Avle

ase
Mounting

Holes Read/Write Head

Side View

0 o% 1 00% Actuator
Throughput (Utilization)
(% total BW)

Platters

+ Performance of I/O subsystem
— Metrics: Response Time, Throughput SCSt ntertace

Connector

— Contributing factors to latency: Jumper Pins

» Software paths (can be loosely modeled by a queue) W tJWHD' o
Hardwar ntroller estern Digital Drive

» Hard a_e co t_o e_ http://www.storagereview.com/guide/

» 1/O device service time

Ribbon Cable
(attaches heads
to Logic Board)

Power Tape Seal

+ Queuing behavior: IBM Personal Computer/AT (1986)
— Can lead to big increases of latency as utilization approaches 30 MB hard disk - $500 IBM/Hitachi Microdrive
100% 30-40ms seek time
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.27 2/29/2012 0.7-1 MB/s (est.) CS162 ©UCB Spring 2012 12.28

Page 7

Properties of a Magnetic Hard Disk

Sect

Platters

Tracl

+ Properties
Inde endently addressable element: sector
S always transfers groups of sectors together— “blocks”
-A dISk can access directly any given block of information it
contains (random access). Can access any file either
sequentially or randomly.
— A disk can be rewritten in place: it is possible to read/modify/
write a block from the disk
+ Typical numbers (depending on the disk size):
— 500 to more than 20,000 tracks per surface
— 32 to 800 sectors per track
» A sector is the smallest unit that can be read or written
» Zoned bit recording
— Constant bit density: more bits (sectors) on outer tracks

— Apple][gs/old Macs: speed varies with track location
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.29

Typical Numbers of a Magnetic Disk

Average seek time Typically 8-12 milliseconds.
Depending on reference locality, actual cost may be

25-33% of this number.

Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk yielding
corresponding times of 8-4 milliseconds

Average rotational
latency

Controller time Depends on controller hardware

Typically 50 to 100 MB/s.
Depends on:
» Transfer size (usually a sector): 512B — 1KB
per sector
* Rotation speed: 3600 RPM to 15000 RPM
» Recording density: bits per inch on a track
+ Diameter: ranges from 1into 5.25 in

Transfer time

Cost Drops by a factor of two per year (since 1991).
$0.075/GB in 2011

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.31

Page 8

Track

Magnetic Disk Characteristic Sector

Cylinder: all the tracks under the
head at a given point on all surfaces
Read/write data is a three-stage Cylinder
process: “Platter
— Seek time: position the head/arm over the proper track (into
proper cylinder)
— Rotational latency: wait for the desired sector
to rotate under the read/write head
— Transfer time: transfer a block of bits (sector)
under the read-write head

Disk Latency = Queuing Time + Controller time +

Head| ¢
¢

Seek Time + Rotation Time + Xfer Time
o) 2
2 Sl 33 Media Time 2
S Szl o= (Seek+Rot+Xfer) 2
2 (Device Driver) H % =

Highest Bandwidth:

— Transfer large group of blocks sequentially from one track
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.30

Disk Performance Examples
» Assumptions:
— Ignoring queuing and controller times for now
— Avg seek time of 5ms,
— 7200RPM = Time for one rotation: 8ms
— Transfer rate of 4MByte/s, sector size of 1 KByte
+ Read sector from random place on disk:
— Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)
— Approx 10ms to fetch/put data: 100 KByte/sec
+ Read sector from random place in same cylinder:
— Rot. Delay (4ms) + Transfer (0.25ms)
— Approx 5ms to fetch/put data: 200 KByte/sec
+ Read next sector on same track:
— Transfer (0.25ms): 4 MByte/sec

+ Key to using disk effectively (especially for file systems)
is to minimize seek and rotational delays

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.32

Disk Scheduling
+ Disk'can do only one request at a time; What order do you

choose to do queued requests?
User Nl ~9 N ™ Head
Requests ™ N N] = o

+ FIFO Order
— Fair among requesters, but order of arrival may be to random
spots on the disk = Very long seeks
+ SSTF: Shortest seek time first
— Pick the request that’s closest on the disk
— Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
— Con: SSTF good at reducing seeks, but
may lead to starvation
+ SCAN: Implements an Elevator Algorithm: take the closest
request in the direction of travel
— No starvation, but retains flavor of SSTF
+ C-SCAN: Circular-Scan: only goes in one direction
— Skips any requests on the way back

— Fairer than SCAN, not biased towards ges in middle
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

12.33

PesH ysig

SSD Architecture — Reads

Buffer Flash
Host S| Manager, Memory
Controller|

DRAM

+ Reading data similar to memory read (25us)
— No seek or rotational latency

— Transfer time: transfer a block of bits (sector)

» Limited by controller and disk interface (SATA: 300-600MB/s)
— Disk Latency = Queuing Time + Controller time + Xfer Time
— Highest Bandwidth: Sequential OR Random reads

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.35

2/29/2012

Page 9

Solid State Disks (SSDs)

+ 1995 — Replace rotating magnetic media with non-volatile
memory (battery backed DRAM)

— Since 2009, use NAND Flash: Single Level Cell (1-bit/cell),
Multi-Level Cell (2-bit/cell)
+ Sector addressable, but stores 4-64 “sectors” per memory
page
» No moving parts (no rotate/seek motors)
— Eliminates seek and rotational delay (0.1-0.2ms access time)

— Very low power and lightweight

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.34

2/29/2012

SSD Architecture — Writes

+ Writing data is complex! (~200us — 1.7ms)

— No seek or rotational latency, Xfer time: transfer a sector
+ But, can only write empty pages (erase takes ~1.5ms!)

— Controller maintains pool of empty pages by coalescing used

sectors (read, erase, write), also reserve some % of capacity

» Typical steady state behavior when SSD is almost full

— One erase every 64 or 128 writes (depending on page size)
+ Write and erase cycles require “high” voltage

— Damages memory cells, limits SSD lifespan

— Controller uses ECC, performs wear leveling

— OS may provide TRIM information about “deleted” sectors

* Result is very workload dependent performance
— Disk Latency = Queuing Time + Controller time (Find Free
Block) + Xfer Time

LA~ [P

T TN} AN N ' n 0

Rule of thumb: writes 10x more expensive than reads
and erases 10x more expensive than writes

Storage Performance & Price

Bandwidth Cost/GB Size
(sequential R/W)

HHD 50-100 MB/s $0.05-0.1/GB 2-4TB

SSD! 200-500 MB/s $1.5-5/GB 200GB-1TB
(SATA)
6 GB/s (PCI)

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

Thttp://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/

BW: SSD up to x10 than HDD, DRAM > x10 than SSD
Price: HDD x30 less than SSD, SSD x4 less than DRAM

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.37

SSD Summary

+ Pros (vs. magnetic disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)
— No moving parts:
» Very light weight, low power, silent, very shock insensitive
— Read at memory speeds (limited by controller and 1/0 bus)

+ Cons
— Small storage (0.1-0.5x disk), very expensive (30x disk)
» Hybrid alternative: combine small SSD with large HDD
— Asymmetric block write performance: read pg/erase/write pg
» Controller GC algorithms have major effect on performance
» Sequential write performance may be worse than HDD
— Limited drive lifetime (NOR is higher, more expensive)

» 50-100K writes/page for SLC, 1-10K writes/page for MLC

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.39

Page 10

Is 2012 the Tipping Point for SSDs?

Average HDD and SSD prices in USD per gigabyte

HDD © SsD
$60

e

Prediction

$56.30/GB

$40/GB

.

i

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
$0.054/GB

www.pingdom.com

Data sources: Mkomo.com, Gartner, and Pingdom (December 2011)

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.38

Summary

* Dual-Mode
— Kernel/User distinction: User restricted
— User—Kernel: System calls, Traps, or Interrupts

+ 1/0O Devices Types:
— Many different speeds (0.1 bytes/sec to GBytes/sec)
— Different Access Patterns: block, char, net devices
— Different Access Timing: Non-/Blocking, Asynchronous

2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.40

Summary

+ 1/O Controllers: Hardware that controls actual device
— CPU accesses thru I/0 insts, Id/st to special phy memory
— Report results thru interrupts or a status register polling

+ Device Driver: Device-specific code in kernel

+ Magnetic Disk Performance:
— Queuing time + Controller + Seek + Rotational + Transfer
— Rotational latency: on average ¥ rotation
— Transfer time: depends on rotation speed and bit density

+ SSD Performance:
— Read: Queuing time + Controller + Transfer
— Write: Queuing time + Controller (Find Free Block) + Transfer
— Find Free Block time: depends on how full SSD is (available
empty pages), write burst duration, ...

— Limited drive lifespan
2/29/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 12.41

Page 11

