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•  Dual Mode Operation: Kernel versus User Mode!
•  I/O Systems!

– Hardware Access!
– Device Drivers!

•  Disk Performance!
– Hardware performance parameters!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz."

Goals for Today"
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Dual-Mode Operation"

•  Can an application modify its own translation maps?!
–  If it could, could get access to all of physical memory!
– Has to be restricted somehow!

•  To assist with protection, hardware provides at least two 
modes (Dual-Mode Operation):!

–  “Kernel” mode (or “supervisor” or “protected”)!
–  “User” mode (Normal program mode)!
– Mode set with bits in special control register only accessible 

in kernel-mode!

•  Intel processors actually have four “rings” of protection:!
– PL (Privilege Level) from 0 – 3!

»  PL0 has full access, PL3 has least!
– Typical OS kernels on Intel processors only use PL0 

(“kernel”) and PL3 (“user”)!
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For Protection, Lock User-Programs in Asylum"
•  Idea: Lock user programs in padded cell  

with no exit or sharp objects!
– Cannot change mode to kernel mode!
– User cannot modify translation maps !
– Limited access to memory: cannot  

adversely effect other processes!
»  Side-effect: Limited access to  

memory-mapped I/O operations !
– What else needs to be protected?!

•  A couple of issues!
– How to share CPU between kernel and user programs? !

»  Kinda like both the inmates and the warden in asylum are the 
same person.  How do you manage this???!

– How does one switch between kernel and user modes?!
» OS → user (kernel → user mode): getting into cell!
» User→ OS (user → kernel mode): getting out of cell!
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How to get from Kernel→User"
•  What does the kernel do to create a new user process?!

– Allocate and initialize process control block!
– Read program off disk and store in memory!
– Allocate and initialize translation map!

»  Point at code in memory so program can execute!
»  Possibly point at statically initialized data!

– Run Program:!
»  Set machine registers!
»  Set hardware pointer to translation table!
»  Set processor status word for user mode!
»  Jump to start of program!

•  How does kernel switch between processes?!
– Same saving/restoring of registers as before!
– Save/restore hardware pointer to translation map!
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User→Kernel (System Call)"
•  Canʼt let inmate (user) get out of padded cell on own!

– Would defeat purpose of protection!!
– So, how does the user program get back into kernel?!

•  System call: Voluntary procedure call into kernel!
– Hardware for controlled User→Kernel transition!
– Can any kernel routine be called?!

» No!  Only specific ones!
– System call ID encoded into system call instruction!

»  Index forces well-defined interface with kernel!

I/O: open, close, read, write, lseek!
Files: delete, mkdir, rmdir, chown!
Process: fork, exit, join!
Network: socket create, select!
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System Call (contʼd)"

•  Are system calls constant across operating systems?!
– Not entirely, but there are lots of commonalities!
– Also some standardization attempts (POSIX)!

•  What happens at beginning of system call?!
– On entry to kernel, sets system to kernel mode!
– Handler address fetched from table, and Handler started!

•  System Call argument passing:!
–  In registers (not very much can be passed)!
– Write into user memory, kernel copies into kernel memory!
– Every argument must be explicitly checked!!
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User→Kernel (Exceptions: Traps and Interrupts)"
•  A system call instruction causes a synchronous exception 

(or “trap”)!
–  In fact, often called a software “trap” instruction!

•  Other sources of Synchronous Exceptions:!
– Divide by zero, Illegal instruction, Bus error (bad address, e.g. 

unaligned access)!
– Segmentation Fault (address out of range)!
– Page Fault (for illusion of infinite-sized memory)!

•  Interrupts are Asynchronous Exceptions!
– Examples: timer, disk ready, network, etc….!
–  Interrupts can be disabled, traps cannot!!

•  SUMMARY – On system call, exception, or interrupt:!
– Hardware enters kernel mode with interrupts disabled!
– Saves PC, then jumps to appropriate handler in kernel!
– For some processors (x86), processor also saves registers, 

changes stack, etc.!
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Additions to MIPS ISA to support Exceptions?"
•  Exception state is kept in “Coprocessor 0”!

– Use mfc0 to read contents of these registers:!
»  BadVAddr (register 8): contains memory address at which memory 

reference error occurred!
»  Status (register 12): interrupt mask and enable bits !
» Cause (register 13): the cause of the exception!
»  EPC (register 14): address of the affected instruction!

•  Status Register fields:!
– Mask: Interrupt enable!

»  1 bit for each of 5 hardware and 3 software interrupts!
– k = kernel/user: !0⇒kernel mode!
– e = interrupt enable: 0⇒interrupts disabled!
– Exception⇒6 LSB shifted left 2 bits, setting 2 LSB to 0:!

»  run in kernel mode with interrupts disabled !

Status 
15 8 5 4 3 2 1 0 

k e k e k e Mask 
old prev cur 
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Modern I/O Systems"
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The Requirements of I/O"
•  What is the role of I/O?!

– Without I/O, computers are useless (disembodied brains?)!
– But… thousands of devices, each slightly different!

» How can we standardize the interfaces to these devices?!
– Devices unreliable: media failures and transmission errors!

» How can we make them reliable???!
– Devices unpredictable and/or slow!

» How can we manage them if we donʼt know what they will do or 
how they will perform?!

•  Some operational parameters:!
– Byte/Block!

»  Some devices provide single byte at a time (e.g., keyboard)!
» Others provide whole blocks (e.g., disks, networks, etc.)!

– Sequential/Random!
»  Some devices must be accessed sequentially (e.g., tape)!
» Others can be accessed randomly (e.g., disk, cd, etc.)!

– Polling/Interrupts!
»  Some devices require continual monitoring!
» Others generate interrupts when they need service!
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Example Device-Transfer Rates (Sun Enterprise 6000)"

•  Device Rates vary over many orders of magnitude!
– System better be able to handle this wide range!
– Better not have high overhead/byte for fast devices!!
– Better not waste time waiting for slow devices!
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The Goal of the I/O Subsystem"

•  Provide uniform interfaces, despite wide range of different 
devices!

– This code works on many different devices:!
  FILE fd = fopen(“/dev/something”,“rw”); 

 for (int i = 0; i < 10; i++) { 
  fprintf(fd, “Count %d\n”,i); 
 } 
 close(fd); 

– Why?  Because code that controls devices (“device driver”) 
implements standard interface.!

•  We will try to get a flavor for what is involved in actually 
controlling devices in rest of lecture!

– Can only scratch surface! !!
! !!
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Want Standard Interfaces to Devices"
•  Block Devices: e.g., disk drives, tape drives, DVD-ROM!

– Access blocks of data!
– Commands include open(), read(), write(), seek() 
– Raw I/O or file-system access!
– Memory-mapped file access possible!

•  Character Devices: e.g., keyboards, mice, serial ports, some 
USB devices!

– Single characters at a time!
– Commands include get(), put() 
– Libraries layered on top allow line editing!

•  Network Devices: e.g., Ethernet, Wireless, Bluetooth!
– Different enough from block/character to have own interface!
– Unix and Windows include socket interface!

»  Separates network protocol from network operation!
»  Includes select() functionality!

– Usage: pipes, FIFOs, streams, queues, mailboxes!
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How Does User Deal with Timing?"

•  Blocking Interface: “Wait”!
– When request data (e.g., read() system call), put process to 

sleep until data is ready!
– When write data (e.g., write() system call), put process to 

sleep until device is ready for data!
•  Non-blocking Interface: “Donʼt Wait”!

– Returns quickly from read or write request with count of bytes 
successfully transferred to kernel!

– Read may return nothing, write may write nothing!
•  Asynchronous Interface: “Tell Me Later”!

– When requesting data, take pointer to userʼs buffer, return 
immediately; later kernel fills buffer and notifies user!

– When sending data, take pointer to userʼs buffer, return 
immediately; later kernel takes data and notifies user !
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How does the processor actually talk to the device?"

•  CPU interacts with a Controller!
– Contains a set of registers that  

can be read and written!
– May contain memory for request  

queues or bit-mapped images !
•  Regardless of the complexity of the connections and buses, 

processor accesses registers in two ways: !
–  I/O instructions: in/out instructions!

»  Example from the Intel architecture: out 0x21,AL!
– Memory mapped I/O: load/store instructions!

» Registers/memory appear in physical address space!
»  I/O accomplished with load and store instructions!

Address+"
Data"

Interrupt Request"

Processor Memory Bus"

CPU"
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Other Devices"
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Bus!
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Intel Cougar Point chipset (Sandy Bridge CPUs)"
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Example: Memory-Mapped Display Controller"
•  Memory-Mapped:!

– Hardware maps control registers and 
display memory into physical address 
space!

»  Addresses set by hardware jumpers or 
programming at boot time!

–  Simply writing to display memory (also 
called the “frame buffer”) changes 
image on screen!

»  Addr: 0x8000F000—0x8000FFFF!
– Writing graphics description to 

command-queue area !
»  Say enter a set of triangles that describe 

some scene!
»  Addr: 0x80010000—0x8001FFFF!

– Writing to the command register may 
cause on-board graphics hardware to do 
something!

»  Say render the above scene!
»  Addr: 0x0007F004!

•  Can protect with address translation!

Display"
Memory"

0x8000F000"

0x80010000"

Physical Address"
Space"

Status"0x0007F000"
Command"0x0007F004"

Graphics"
Command"

Queue"

0x80020000"
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Transferring Data To/From Controller"
•  Programmed I/O:!

– Each byte transferred via processor in/out or load/store!
– Pro: Simple hardware, easy to program!
– Con: Consumes processor cycles proportional to data size!

•  Direct Memory Access:!
– Give controller access to memory bus!
– Ask it to transfer data to/from memory directly!

•  Sample interaction with DMA controller (from book):!
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Administrivia"

•  Please fill the anonymous course survey at 
https://www.surveymonkey.com/s/DZ5Y8XM!

•  Weʼll make changes this semester based on your feedback!

•  Project 2 Design Doc due Thursday 3/1 at 11:59PM!

•  Midterm next Wednesday 3/7 at 5-6:30PM in 10 Evans!
•  Closed-book, 1 double-sided page of handwritten notes!
•  Covers lectures/readings #1-12 (Wed 3/1) and project one!
•  Midterm review session: Monday 3/5 7-9PM in 141 McCone!
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5min Break"
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A Kernel I/O Structure"

Device-specific kernel !
code supporting !

common API with !
ioctl() extensions !

Interrupt routine for !
processing I/O!
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Device Drivers"
•  Device Driver: Device-specific code in the kernel that 

interacts directly with the device hardware!
– Supports a standard, internal interface!
– Same kernel I/O system can interact easily with different 

device drivers!
– Special device-specific configuration supported with the 
ioctl() system call!

•  Device Drivers typically divided into two pieces:!
– Top half: accessed in call path from system calls!

»  Implements a set of standard, cross-device calls like open(), 
close(), read(), write(), ioctl(), strategy() 

»  This is the kernelʼs interface to the device driver!
»  Top half will start I/O to device, may put thread to sleep until 

finished!
– Bottom half: run as interrupt routine!

» Gets input or transfers next block of output!
» May wake sleeping threads if I/O now complete!
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Life Cycle of An I/O Request"

Device Driver!
Top Half!

Device Driver!
Bottom Half!

Device!
Hardware!

Kernel I/O!
Subsystem!

User!
Program!
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I/O Device Notifying the OS"
• The OS needs to know when:!

– The I/O device has completed an operation!
– The I/O operation has encountered an error!

•  I/O Interrupt:!
– Device generates an interrupt whenever it needs service!
– Handled in bottom half of device driver!

»  Often run on special kernel-level stack!
– Pro: handles unpredictable events well!
– Con: interrupts relatively high overhead !

• Polling:!
– OS periodically checks a device-specific status register!

»  I/O device puts completion information in status register!
»  Could use timer to invoke lower half of drivers occasionally!

– Pro: low overhead!
– Con: may waste many cycles on polling if infrequent or 

unpredictable I/O operations!
• Actual devices combine both polling and interrupts!

– For instance – High-bandwidth network adapter: !
»  Interrupt for first incoming packet!
»  Poll for following packets until hardware queues are empty!
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I/O Performance"

Response Time = Queue + I/O device service time"

User"
Thread"

Queue"
[OS Paths]"

C
ontroller"

I/O"
device"

•  Performance of I/O subsystem!
– Metrics: Response Time, Throughput!
– Contributing factors to latency:!

»  Software paths (can be loosely modeled by a queue)!
» Hardware controller!
»  I/O device service time!

•  Queuing behavior:!
– Can lead to big increases of latency as utilization approaches 

100%!

100%"

Response"
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Throughput  (Utilization)"
(% total BW)"

0"
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Hard Disk Drives"

IBM/Hitachi Microdrive"

Western Digital Drive!
http://www.storagereview.com/guide/!

Read/Write Head"
Side View"

IBM Personal Computer/AT (1986) 
30 MB hard disk - $500  

30-40ms seek time 
0.7-1 MB/s (est.) 
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Properties of a Magnetic Hard Disk"

•  Properties!
–  Independently addressable element: sector!

» OS always transfers groups of sectors together—“blocks”!
– A disk can access directly any given block of information it 

contains (random access).  Can access any file either 
sequentially or randomly.!

– A disk can be rewritten in place: it is possible to read/modify/
write a block from the disk!

•  Typical numbers (depending on the disk size):!
– 500 to more than 20,000 tracks per surface!
– 32 to 800 sectors per track!

»  A sector is the smallest unit that can be read or written!
•  Zoned bit recording!

– Constant bit density: more bits (sectors) on outer tracks!
– Apple ][gs/old Macs: speed varies with track location!

Track"

Sector"

Platters"
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Magnetic Disk Characteristic"
•  Cylinder: all the tracks under the  

head at a given point on all surfaces!
•  Read/write data is a three-stage  

process:!
– Seek time: position the head/arm over the proper track (into 

proper cylinder)!
– Rotational latency: wait for the desired sector 

to rotate under the read/write head!
– Transfer time: transfer a block of bits (sector) 

under the read-write head!
•  Disk Latency = Queuing Time + Controller time + 

!Seek Time + Rotation Time + Xfer Time!

•  Highest Bandwidth: !
– Transfer large group of blocks sequentially from one track!
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Typical Numbers of a Magnetic Disk"

Parameter" Info / Range"
Average seek time! Typically 8-12 milliseconds.!

Depending on reference locality, actual cost may be 
25-33% of this number.!

Average rotational 
latency!

Most laptop/desktop disks rotate at 3600-7200 RPM 
(16-8 ms/rotation). Server disks up to 15,000 RPM.!
Average latency is halfway around disk yielding 
corresponding times of 8-4 milliseconds"

Controller time! Depends on controller hardware!
Transfer time! Typically 50 to 100 MB/s.!

Depends on:!
•  Transfer size (usually a sector): 512B – 1KB 

per sector!
•  Rotation speed: 3600 RPM to 15000 RPM!
•  Recording density: bits per inch on a track!
•  Diameter: ranges from  1 in to 5.25 in!

Cost! Drops by a factor of two per year (since 1991).!
$0.075/GB in 2011"
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Disk Performance Examples"
•  Assumptions:!

–  Ignoring queuing and controller times for now!
– Avg seek time of 5ms, !
– 7200RPM ⇒ Time for one rotation: 8ms!
– Transfer rate of 4MByte/s, sector size of 1 KByte!

•  Read sector from random place on disk:!
– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 10ms to fetch/put data: 100 KByte/sec!

•  Read sector from random place in same cylinder:!
– Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 5ms to fetch/put data: 200 KByte/sec!

•  Read next sector on same track:!
– Transfer (0.25ms): 4 MByte/sec!

•  Key to using disk effectively (especially for file systems) 
is to minimize seek and rotational delays!
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Disk Scheduling"
•  Disk can do only one request at a time; What order do you 

choose to do queued requests?!

•  FIFO Order!
– Fair among requesters, but order of arrival may be to random 

spots on the disk ⇒ Very long seeks!
•  SSTF: Shortest seek time first!

– Pick the request thatʼs closest on the disk!
– Although called SSTF, today must include  

rotational delay in calculation, since  
rotation can be as long as seek!

– Con: SSTF good at reducing seeks, but  
may lead to starvation!

•  SCAN: Implements an Elevator Algorithm: take the closest 
request in the direction of travel!

– No starvation, but retains flavor of SSTF!
•  C-SCAN: Circular-Scan: only goes in one direction!

– Skips any requests on the way back!
– Fairer than SCAN, not biased towards pages in middle!
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Head"User"
Requests"

1"

4"

2"

D
isk H

ead"

3"

12.34!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Solid State Disks (SSDs)"

•  1995 – Replace rotating magnetic media with non-volatile 
memory (battery backed DRAM)!

– Since 2009, use NAND Flash: Single Level Cell (1-bit/cell), 
Multi-Level Cell (2-bit/cell)!

•  Sector addressable, but stores 4-64 “sectors” per memory 
page!

•  No moving parts (no rotate/seek motors)!
– Eliminates seek and rotational delay (0.1-0.2ms access time)!
– Very low power and lightweight !
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SSD Architecture – Reads"

•  Reading data similar to memory read (25µs)!
– No seek or rotational latency!
– Transfer time: transfer a block of bits (sector)!

»  Limited by controller and disk interface (SATA: 300-600MB/s)!
– Disk Latency = Queuing Time + Controller time + Xfer Time!
– Highest Bandwidth: Sequential OR Random reads!

Host" Buffer!
Manager!

Flash!
Memory!

Controller!

DRAM!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

SATA!
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SSD Architecture – Writes"

•  Writing data is complex! (~200µs – 1.7ms )!
– No seek or rotational latency, Xfer time: transfer a sector!

•  But, can only write empty pages (erase takes ~1.5ms!)!
– Controller maintains pool of empty pages by coalescing used 

sectors (read, erase, write), also reserve some % of capacity!
•  Typical steady state behavior when SSD is almost full 

– One erase every 64 or 128 writes (depending on page size)!
•  Write and erase cycles require “high” voltage!

– Damages memory cells, limits SSD lifespan!
– Controller uses ECC, performs wear leveling!
– OS may provide TRIM information about “deleted” sectors!

•  Result is very workload dependent performance!
– Disk Latency = Queuing Time + Controller time (Find Free 

Block) + Xfer Time!
– Highest BW: Seq. OR Random writes (limited by empty pages)!

»  Sequential easier to implement since can write all data to same pg!Rule	
  of	
  thumb:	
  writes	
  10x	
  more	
  expensive	
  than	
  reads,	
  	
  
and	
  erases	
  10x	
  more	
  expensive	
  than	
  writes	
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Storage Performance & Price"

Bandwidth 
(sequential R/W) 

Cost/GB Size 

HHD 50-100 MB/s $0.05-0.1/GB 2-4 TB 

SSD1 200-500 MB/s 
(SATA) 
6 GB/s (PCI) 

$1.5-5/GB 200GB-1TB 

DRAM 10-16 GB/s $5-10/GB 64GB-256GB 

37 

BW:	
  SSD	
  up	
  to	
  x10	
  than	
  HDD,	
  DRAM	
  >	
  x10	
  than	
  SSD	
  
Price:	
  HDD	
  x30	
  less	
  than	
  SSD,	
  SSD	
  x4	
  less	
  than	
  DRAM	
  	
  	
  	
  

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/ !
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Is 2012 the Tipping Point for SSDs?"
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SSD Summary"

•  Pros (vs. magnetic disk drives):!
– Low latency, high throughput (eliminate seek/rotational delay)!
– No moving parts: !

»  Very light weight, low power, silent, very shock insensitive!
– Read at memory speeds (limited by controller and I/O bus)!

•  Cons!
– Small storage (0.1-0.5x disk), very expensive (30x disk)!

» Hybrid alternative: combine small SSD with large HDD!
– Asymmetric block write performance: read pg/erase/write pg!

» Controller GC algorithms have major effect on performance!
»  Sequential write performance may be worse than HDD!

– Limited drive lifetime (NOR is higher, more expensive)!
»  50-100K writes/page for SLC, 1-10K writes/page for MLC!
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Summary"

•  Dual-Mode!
– Kernel/User distinction: User restricted!
– User→Kernel: System calls, Traps, or Interrupts!

•  I/O Devices Types:!
– Many different speeds (0.1 bytes/sec to GBytes/sec)!
– Different Access Patterns: block, char, net devices!
– Different Access Timing: Non-/Blocking, Asynchronous!
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Summary"
•  I/O Controllers: Hardware that controls actual device!

– CPU accesses thru I/O insts, ld/st to special phy memory!
– Report results thru interrupts or a status register polling!

•  Device Driver: Device-specific code in kernel!

•  Magnetic Disk Performance: !
– Queuing time + Controller + Seek + Rotational + Transfer!
– Rotational latency: on average ½ rotation!
– Transfer time: depends on rotation speed and bit density!

•  SSD Performance: !
– Read: Queuing time + Controller + Transfer!
– Write: Queuing time + Controller (Find Free Block) + Transfer!
– Find Free Block time: depends on how full SSD is (available 

empty pages), write burst duration, …!
– Limited drive lifespan!


