
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 12  
 

Kernel/User, I/O, Disks"

February 29, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

12.2!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  Dual Mode Operation: Kernel versus User Mode!
•  I/O Systems!

– Hardware Access!
– Device Drivers!

•  Disk Performance!
– Hardware performance parameters!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

Goals for Today"

12.3!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Example of General Address Translation"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1" Translation Map 2"

Physical Address Space"
12.4!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Dual-Mode Operation"

•  Can an application modify its own translation maps?!
–  If it could, could get access to all of physical memory!
– Has to be restricted somehow!

•  To assist with protection, hardware provides at least two
modes (Dual-Mode Operation):!

–  “Kernel” mode (or “supervisor” or “protected”)!
–  “User” mode (Normal program mode)!
– Mode set with bits in special control register only accessible

in kernel-mode!

•  Intel processors actually have four “rings” of protection:!
– PL (Privilege Level) from 0 – 3!

»  PL0 has full access, PL3 has least!
– Typical OS kernels on Intel processors only use PL0

(“kernel”) and PL3 (“user”)!

Page 2

12.5!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

For Protection, Lock User-Programs in Asylum"
•  Idea: Lock user programs in padded cell  

with no exit or sharp objects!
– Cannot change mode to kernel mode!
– User cannot modify translation maps !
– Limited access to memory: cannot  

adversely effect other processes!
»  Side-effect: Limited access to  

memory-mapped I/O operations !
– What else needs to be protected?!

•  A couple of issues!
– How to share CPU between kernel and user programs? !

»  Kinda like both the inmates and the warden in asylum are the
same person. How do you manage this???!

– How does one switch between kernel and user modes?!
» OS → user (kernel → user mode): getting into cell!
» User→ OS (user → kernel mode): getting out of cell!

12.6!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How to get from Kernel→User"
•  What does the kernel do to create a new user process?!

– Allocate and initialize process control block!
– Read program off disk and store in memory!
– Allocate and initialize translation map!

»  Point at code in memory so program can execute!
»  Possibly point at statically initialized data!

– Run Program:!
»  Set machine registers!
»  Set hardware pointer to translation table!
»  Set processor status word for user mode!
»  Jump to start of program!

•  How does kernel switch between processes?!
– Same saving/restoring of registers as before!
– Save/restore hardware pointer to translation map!

12.7!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

User→Kernel (System Call)"
•  Canʼt let inmate (user) get out of padded cell on own!

– Would defeat purpose of protection!!
– So, how does the user program get back into kernel?!

•  System call: Voluntary procedure call into kernel!
– Hardware for controlled User→Kernel transition!
– Can any kernel routine be called?!

» No! Only specific ones!
– System call ID encoded into system call instruction!

»  Index forces well-defined interface with kernel!

I/O: open, close, read, write, lseek!
Files: delete, mkdir, rmdir, chown!
Process: fork, exit, join!
Network: socket create, select!

12.8!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

System Call (contʼd)"

•  Are system calls constant across operating systems?!
– Not entirely, but there are lots of commonalities!
– Also some standardization attempts (POSIX)!

•  What happens at beginning of system call?!
– On entry to kernel, sets system to kernel mode!
– Handler address fetched from table, and Handler started!

•  System Call argument passing:!
–  In registers (not very much can be passed)!
– Write into user memory, kernel copies into kernel memory!
– Every argument must be explicitly checked!!

Page 3

12.9!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

User→Kernel (Exceptions: Traps and Interrupts)"
•  A system call instruction causes a synchronous exception

(or “trap”)!
–  In fact, often called a software “trap” instruction!

•  Other sources of Synchronous Exceptions:!
– Divide by zero, Illegal instruction, Bus error (bad address, e.g.

unaligned access)!
– Segmentation Fault (address out of range)!
– Page Fault (for illusion of infinite-sized memory)!

•  Interrupts are Asynchronous Exceptions!
– Examples: timer, disk ready, network, etc….!
–  Interrupts can be disabled, traps cannot!!

•  SUMMARY – On system call, exception, or interrupt:!
– Hardware enters kernel mode with interrupts disabled!
– Saves PC, then jumps to appropriate handler in kernel!
– For some processors (x86), processor also saves registers,

changes stack, etc.!
12.10!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Additions to MIPS ISA to support Exceptions?"
•  Exception state is kept in “Coprocessor 0”!

– Use mfc0 to read contents of these registers:!
»  BadVAddr (register 8): contains memory address at which memory

reference error occurred!
»  Status (register 12): interrupt mask and enable bits !
» Cause (register 13): the cause of the exception!
»  EPC (register 14): address of the affected instruction!

•  Status Register fields:!
– Mask: Interrupt enable!

»  1 bit for each of 5 hardware and 3 software interrupts!
– k = kernel/user: !0⇒kernel mode!
– e = interrupt enable: 0⇒interrupts disabled!
– Exception⇒6 LSB shifted left 2 bits, setting 2 LSB to 0:!

»  run in kernel mode with interrupts disabled !

Status
15 8 5 4 3 2 1 0

k e k e k e Mask
old prev cur

12.11!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Modern I/O Systems"

12.12!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

The Requirements of I/O"
•  What is the role of I/O?!

– Without I/O, computers are useless (disembodied brains?)!
– But… thousands of devices, each slightly different!

» How can we standardize the interfaces to these devices?!
– Devices unreliable: media failures and transmission errors!

» How can we make them reliable???!
– Devices unpredictable and/or slow!

» How can we manage them if we donʼt know what they will do or
how they will perform?!

•  Some operational parameters:!
– Byte/Block!

»  Some devices provide single byte at a time (e.g., keyboard)!
» Others provide whole blocks (e.g., disks, networks, etc.)!

– Sequential/Random!
»  Some devices must be accessed sequentially (e.g., tape)!
» Others can be accessed randomly (e.g., disk, cd, etc.)!

– Polling/Interrupts!
»  Some devices require continual monitoring!
» Others generate interrupts when they need service!

Page 4

12.13!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example Device-Transfer Rates (Sun Enterprise 6000)"

•  Device Rates vary over many orders of magnitude!
– System better be able to handle this wide range!
– Better not have high overhead/byte for fast devices!!
– Better not waste time waiting for slow devices!

12.14!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

The Goal of the I/O Subsystem"

•  Provide uniform interfaces, despite wide range of different
devices!

– This code works on many different devices:!
 FILE fd = fopen(“/dev/something”,“rw”);

 for (int i = 0; i < 10; i++) {
 fprintf(fd, “Count %d\n”,i);
 }
 close(fd);

– Why? Because code that controls devices (“device driver”)
implements standard interface.!

•  We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture!

– Can only scratch surface! !!
! !!

12.15!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Want Standard Interfaces to Devices"
•  Block Devices: e.g., disk drives, tape drives, DVD-ROM!

– Access blocks of data!
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access!
– Memory-mapped file access possible!

•  Character Devices: e.g., keyboards, mice, serial ports, some
USB devices!

– Single characters at a time!
– Commands include get(), put()
– Libraries layered on top allow line editing!

•  Network Devices: e.g., Ethernet, Wireless, Bluetooth!
– Different enough from block/character to have own interface!
– Unix and Windows include socket interface!

»  Separates network protocol from network operation!
»  Includes select() functionality!

– Usage: pipes, FIFOs, streams, queues, mailboxes!

12.16!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How Does User Deal with Timing?"

•  Blocking Interface: “Wait”!
– When request data (e.g., read() system call), put process to

sleep until data is ready!
– When write data (e.g., write() system call), put process to

sleep until device is ready for data!
•  Non-blocking Interface: “Donʼt Wait”!

– Returns quickly from read or write request with count of bytes
successfully transferred to kernel!

– Read may return nothing, write may write nothing!
•  Asynchronous Interface: “Tell Me Later”!

– When requesting data, take pointer to userʼs buffer, return
immediately; later kernel fills buffer and notifies user!

– When sending data, take pointer to userʼs buffer, return
immediately; later kernel takes data and notifies user !

Page 5

12.17!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Device"
Controller"

read"
write"

control"
status"

Addressable!
Memory!
and/or!

Queues!Registers"
(port 0x20)"

Hardware!
Controller!

Memory Mapped"
Region: 0x8f008020"

Bus!
Interface!

How does the processor actually talk to the device?"

•  CPU interacts with a Controller!
– Contains a set of registers that  

can be read and written!
– May contain memory for request  

queues or bit-mapped images !
•  Regardless of the complexity of the connections and buses,

processor accesses registers in two ways: !
–  I/O instructions: in/out instructions!

»  Example from the Intel architecture: out 0x21,AL!
– Memory mapped I/O: load/store instructions!

» Registers/memory appear in physical address space!
»  I/O accomplished with load and store instructions!

Address+"
Data"

Interrupt Request"

Processor Memory Bus"

CPU"

Regular!
Memory!

Other Devices"
or Buses"Interrupt!

Controller!

Bus!
Adaptor!

Bus!
Adaptor!

12.18!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Intel Cougar Point chipset (Sandy Bridge CPUs)"

12.19!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example: Memory-Mapped Display Controller"
•  Memory-Mapped:!

– Hardware maps control registers and
display memory into physical address
space!

»  Addresses set by hardware jumpers or
programming at boot time!

–  Simply writing to display memory (also
called the “frame buffer”) changes
image on screen!

»  Addr: 0x8000F000—0x8000FFFF!
– Writing graphics description to

command-queue area !
»  Say enter a set of triangles that describe

some scene!
»  Addr: 0x80010000—0x8001FFFF!

– Writing to the command register may
cause on-board graphics hardware to do
something!

»  Say render the above scene!
»  Addr: 0x0007F004!

•  Can protect with address translation!

Display"
Memory"

0x8000F000"

0x80010000"

Physical Address"
Space"

Status"0x0007F000"
Command"0x0007F004"

Graphics"
Command"

Queue"

0x80020000"

12.20!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Transferring Data To/From Controller"
•  Programmed I/O:!

– Each byte transferred via processor in/out or load/store!
– Pro: Simple hardware, easy to program!
– Con: Consumes processor cycles proportional to data size!

•  Direct Memory Access:!
– Give controller access to memory bus!
– Ask it to transfer data to/from memory directly!

•  Sample interaction with DMA controller (from book):!

Page 6

12.21!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Administrivia"

•  Please fill the anonymous course survey at
https://www.surveymonkey.com/s/DZ5Y8XM!

•  Weʼll make changes this semester based on your feedback!

•  Project 2 Design Doc due Thursday 3/1 at 11:59PM!

•  Midterm next Wednesday 3/7 at 5-6:30PM in 10 Evans!
•  Closed-book, 1 double-sided page of handwritten notes!
•  Covers lectures/readings #1-12 (Wed 3/1) and project one!
•  Midterm review session: Monday 3/5 7-9PM in 141 McCone!

12.22!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

12.23!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

A Kernel I/O Structure"

Device-specific kernel !
code supporting !

common API with !
ioctl() extensions !

Interrupt routine for !
processing I/O!

12.24!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Device Drivers"
•  Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware!
– Supports a standard, internal interface!
– Same kernel I/O system can interact easily with different

device drivers!
– Special device-specific configuration supported with the
ioctl() system call!

•  Device Drivers typically divided into two pieces:!
– Top half: accessed in call path from system calls!

»  Implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl(), strategy()

»  This is the kernelʼs interface to the device driver!
»  Top half will start I/O to device, may put thread to sleep until

finished!
– Bottom half: run as interrupt routine!

» Gets input or transfers next block of output!
» May wake sleeping threads if I/O now complete!

Page 7

12.25!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Life Cycle of An I/O Request"

Device Driver!
Top Half!

Device Driver!
Bottom Half!

Device!
Hardware!

Kernel I/O!
Subsystem!

User!
Program!

12.26!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

I/O Device Notifying the OS"
• The OS needs to know when:!

– The I/O device has completed an operation!
– The I/O operation has encountered an error!

•  I/O Interrupt:!
– Device generates an interrupt whenever it needs service!
– Handled in bottom half of device driver!

»  Often run on special kernel-level stack!
– Pro: handles unpredictable events well!
– Con: interrupts relatively high overhead !

• Polling:!
– OS periodically checks a device-specific status register!

»  I/O device puts completion information in status register!
»  Could use timer to invoke lower half of drivers occasionally!

– Pro: low overhead!
– Con: may waste many cycles on polling if infrequent or

unpredictable I/O operations!
• Actual devices combine both polling and interrupts!

– For instance – High-bandwidth network adapter: !
»  Interrupt for first incoming packet!
»  Poll for following packets until hardware queues are empty!

12.27!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

I/O Performance"

Response Time = Queue + I/O device service time"

User"
Thread"

Queue"
[OS Paths]"

C
ontroller"

I/O"
device"

•  Performance of I/O subsystem!
– Metrics: Response Time, Throughput!
– Contributing factors to latency:!

»  Software paths (can be loosely modeled by a queue)!
» Hardware controller!
»  I/O device service time!

•  Queuing behavior:!
– Can lead to big increases of latency as utilization approaches

100%!

100%"

Response"
Time (ms)"

Throughput (Utilization)"
(% total BW)"

0"

100"

200"

300"

0%"

12.28!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Hard Disk Drives"

IBM/Hitachi Microdrive"

Western Digital Drive!
http://www.storagereview.com/guide/!

Read/Write Head"
Side View"

IBM Personal Computer/AT (1986)
30 MB hard disk - $500

30-40ms seek time
0.7-1 MB/s (est.)

Page 8

12.29!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Properties of a Magnetic Hard Disk"

•  Properties!
–  Independently addressable element: sector!

» OS always transfers groups of sectors together—“blocks”!
– A disk can access directly any given block of information it

contains (random access). Can access any file either
sequentially or randomly.!

– A disk can be rewritten in place: it is possible to read/modify/
write a block from the disk!

•  Typical numbers (depending on the disk size):!
– 500 to more than 20,000 tracks per surface!
– 32 to 800 sectors per track!

»  A sector is the smallest unit that can be read or written!
•  Zoned bit recording!

– Constant bit density: more bits (sectors) on outer tracks!
– Apple][gs/old Macs: speed varies with track location!

Track"

Sector"

Platters"

12.30!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Magnetic Disk Characteristic"
•  Cylinder: all the tracks under the  

head at a given point on all surfaces!
•  Read/write data is a three-stage  

process:!
– Seek time: position the head/arm over the proper track (into

proper cylinder)!
– Rotational latency: wait for the desired sector 

to rotate under the read/write head!
– Transfer time: transfer a block of bits (sector) 

under the read-write head!
•  Disk Latency = Queuing Time + Controller time + 

!Seek Time + Rotation Time + Xfer Time!

•  Highest Bandwidth: !
– Transfer large group of blocks sequentially from one track!

Sector"
Track"

Cylinder"
Head"

Platter"

Software"
Queue"

(Device Driver)"

H
ardw

are"
C

ontroller"
 Media Time"

(Seek+Rot+Xfer)"

R
equest"

R
esult"

12.31!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Typical Numbers of a Magnetic Disk"

Parameter" Info / Range"
Average seek time! Typically 8-12 milliseconds.!

Depending on reference locality, actual cost may be
25-33% of this number.!

Average rotational
latency!

Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.!
Average latency is halfway around disk yielding
corresponding times of 8-4 milliseconds"

Controller time! Depends on controller hardware!
Transfer time! Typically 50 to 100 MB/s.!

Depends on:!
•  Transfer size (usually a sector): 512B – 1KB

per sector!
•  Rotation speed: 3600 RPM to 15000 RPM!
•  Recording density: bits per inch on a track!
•  Diameter: ranges from 1 in to 5.25 in!

Cost! Drops by a factor of two per year (since 1991).!
$0.075/GB in 2011"

12.32!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Disk Performance Examples"
•  Assumptions:!

–  Ignoring queuing and controller times for now!
– Avg seek time of 5ms, !
– 7200RPM ⇒ Time for one rotation: 8ms!
– Transfer rate of 4MByte/s, sector size of 1 KByte!

•  Read sector from random place on disk:!
– Seek (5ms) + Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 10ms to fetch/put data: 100 KByte/sec!

•  Read sector from random place in same cylinder:!
– Rot. Delay (4ms) + Transfer (0.25ms)!
– Approx 5ms to fetch/put data: 200 KByte/sec!

•  Read next sector on same track:!
– Transfer (0.25ms): 4 MByte/sec!

•  Key to using disk effectively (especially for file systems)
is to minimize seek and rotational delays!

Page 9

12.33!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Disk Scheduling"
•  Disk can do only one request at a time; What order do you

choose to do queued requests?!

•  FIFO Order!
– Fair among requesters, but order of arrival may be to random

spots on the disk ⇒ Very long seeks!
•  SSTF: Shortest seek time first!

– Pick the request thatʼs closest on the disk!
– Although called SSTF, today must include  

rotational delay in calculation, since  
rotation can be as long as seek!

– Con: SSTF good at reducing seeks, but  
may lead to starvation!

•  SCAN: Implements an Elevator Algorithm: take the closest
request in the direction of travel!

– No starvation, but retains flavor of SSTF!
•  C-SCAN: Circular-Scan: only goes in one direction!

– Skips any requests on the way back!
– Fairer than SCAN, not biased towards pages in middle!

2,3"
2,1"
3,10"
7,2"
5,2"
2,2"

Head"User"
Requests"

1"

4"

2"

D
isk H

ead"

3"

12.34!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Solid State Disks (SSDs)"

•  1995 – Replace rotating magnetic media with non-volatile
memory (battery backed DRAM)!

– Since 2009, use NAND Flash: Single Level Cell (1-bit/cell),
Multi-Level Cell (2-bit/cell)!

•  Sector addressable, but stores 4-64 “sectors” per memory
page!

•  No moving parts (no rotate/seek motors)!
– Eliminates seek and rotational delay (0.1-0.2ms access time)!
– Very low power and lightweight !

12.35!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

SSD Architecture – Reads"

•  Reading data similar to memory read (25µs)!
– No seek or rotational latency!
– Transfer time: transfer a block of bits (sector)!

»  Limited by controller and disk interface (SATA: 300-600MB/s)!
– Disk Latency = Queuing Time + Controller time + Xfer Time!
– Highest Bandwidth: Sequential OR Random reads!

Host" Buffer!
Manager!

Flash!
Memory!

Controller!

DRAM!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

NAND!NAND!NAND!NAND!

SATA!

12.36!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

SSD Architecture – Writes"

•  Writing data is complex! (~200µs – 1.7ms)!
– No seek or rotational latency, Xfer time: transfer a sector!

•  But, can only write empty pages (erase takes ~1.5ms!)!
– Controller maintains pool of empty pages by coalescing used

sectors (read, erase, write), also reserve some % of capacity!
•  Typical steady state behavior when SSD is almost full

– One erase every 64 or 128 writes (depending on page size)!
•  Write and erase cycles require “high” voltage!

– Damages memory cells, limits SSD lifespan!
– Controller uses ECC, performs wear leveling!
– OS may provide TRIM information about “deleted” sectors!

•  Result is very workload dependent performance!
– Disk Latency = Queuing Time + Controller time (Find Free

Block) + Xfer Time!
– Highest BW: Seq. OR Random writes (limited by empty pages)!

»  Sequential easier to implement since can write all data to same pg!Rule	
 of	
 thumb:	
 writes	
 10x	
 more	
 expensive	
 than	
 reads,	
 	

and	
 erases	
 10x	
 more	
 expensive	
 than	
 writes	

Page 10

12.37!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Storage Performance & Price"

Bandwidth
(sequential R/W)

Cost/GB Size

HHD 50-100 MB/s $0.05-0.1/GB 2-4 TB

SSD1 200-500 MB/s
(SATA)
6 GB/s (PCI)

$1.5-5/GB 200GB-1TB

DRAM 10-16 GB/s $5-10/GB 64GB-256GB

37

BW:	
 SSD	
 up	
 to	
 x10	
 than	
 HDD,	
 DRAM	
 >	
 x10	
 than	
 SSD	

Price:	
 HDD	
 x30	
 less	
 than	
 SSD,	
 SSD	
 x4	
 less	
 than	
 DRAM	
 	
 	
 	

1http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/ !

12.38!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Is 2012 the Tipping Point for SSDs?"

12.39!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

SSD Summary"

•  Pros (vs. magnetic disk drives):!
– Low latency, high throughput (eliminate seek/rotational delay)!
– No moving parts: !

»  Very light weight, low power, silent, very shock insensitive!
– Read at memory speeds (limited by controller and I/O bus)!

•  Cons!
– Small storage (0.1-0.5x disk), very expensive (30x disk)!

» Hybrid alternative: combine small SSD with large HDD!
– Asymmetric block write performance: read pg/erase/write pg!

» Controller GC algorithms have major effect on performance!
»  Sequential write performance may be worse than HDD!

– Limited drive lifetime (NOR is higher, more expensive)!
»  50-100K writes/page for SLC, 1-10K writes/page for MLC!

12.40!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"

•  Dual-Mode!
– Kernel/User distinction: User restricted!
– User→Kernel: System calls, Traps, or Interrupts!

•  I/O Devices Types:!
– Many different speeds (0.1 bytes/sec to GBytes/sec)!
– Different Access Patterns: block, char, net devices!
– Different Access Timing: Non-/Blocking, Asynchronous!

Page 11

12.41!2/29/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"
•  I/O Controllers: Hardware that controls actual device!

– CPU accesses thru I/O insts, ld/st to special phy memory!
– Report results thru interrupts or a status register polling!

•  Device Driver: Device-specific code in kernel!

•  Magnetic Disk Performance: !
– Queuing time + Controller + Seek + Rotational + Transfer!
– Rotational latency: on average ½ rotation!
– Transfer time: depends on rotation speed and bit density!

•  SSD Performance: !
– Read: Queuing time + Controller + Transfer!
– Write: Queuing time + Controller (Find Free Block) + Transfer!
– Find Free Block time: depends on how full SSD is (available

empty pages), write burst duration, …!
– Limited drive lifespan!

