|                                                                                               | Goals for Today                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CS162<br>Operating Systems and<br>Systems Programming<br>Lecture 11                           | <ul> <li>Page Replacement Policies         <ul> <li>FIFO, LRU</li> <li>Clock Algorithm</li> </ul> </li> <li>Working Set/Thrashing</li> </ul>                                        |
| Page Allocation and Replacement                                                               |                                                                                                                                                                                     |
| February 27, 2012<br>Anthony D. Joseph and Ion Stoica<br>http://inst.eecs.berkeley.edu/~cs162 | Note: Some slides and/or pictures in the following are<br>adapted from slides ©2005 Silberschatz, Galvin, and Gagne.<br>Many slides generated from my lecture notes by Kubiatowicz. |
|                                                                                               | 2/27/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012 11.2                                                                                                              |

| M              | emory Topics (                                                                                                                                                  | 61C and 162)                                                                                                                                                                               |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Торіс          | 61C                                                                                                                                                             | 162                                                                                                                                                                                        |
| Protection     | HW-based address spaces                                                                                                                                         | HW-based address spaces, SW-<br>based strong typing, SW fault isolation                                                                                                                    |
| Virtual Memory | Base & bound and single-<br>level paging approaches                                                                                                             | Base & bound, swapping, multiple<br>segments, paging, multi-level, inverted<br>page table approaches.<br>Shared memory and msg passing.                                                    |
| Caching        | Mem hierarchy, temporal/<br>spatial locality, 3 sources<br>of cache misses, direct/<br>associative caches, write-<br>through/back policies,<br>access time calc | Mem hierarchy, temporal/spatial<br>locality, five sources of cache misses,<br>direct/associative caches, write-<br>through/back policies, access time<br>calc, context switch implications |
| TLB            | Basic concept                                                                                                                                                   | Concept and overlapped with cache                                                                                                                                                          |
| Paging         | Overview, LRU algorithm                                                                                                                                         | Detailed steps, analyzing algorithms,<br>approximating LRU, implementing<br>second-change and nth chance<br>algorithms, working sets                                                       |
| 2/27/2012      | Anthony D. Joseph and Ion Stoica                                                                                                                                | CS162 ©UCB Spring 2012 11.3                                                                                                                                                                |













## Demand Paging is Caching

· Since Demand Paging is Caching, we must ask:

|       | Question                                                                                          | Choice                      |       |
|-------|---------------------------------------------------------------------------------------------------|-----------------------------|-------|
|       | What is the block size?                                                                           |                             |       |
|       | What is the organization of this cache (i.e., direct-mapped, set-associative, fully-associative)? |                             |       |
|       | How do we find a page in the cache?                                                               |                             |       |
|       | What is page replacement policy?<br>(i.e., LRU, Random,)                                          |                             |       |
|       | What happens on a miss?                                                                           |                             |       |
|       | What happens on a write? (i.e., write-through, write-back)                                        |                             |       |
| /27/2 | 2012 Anthony D. Joseph and Ion Sto                                                                | pica CS162 ©UCB Spring 2012 | 11.10 |









| e<br>j<br>r          | refe<br>A B           | hav<br>eren<br>D A<br>-O P | e 3 p<br>ce st<br>D B (<br>age | oage<br>rean<br>C B<br>repla | fram<br>n:<br>acem | nes, 4<br>nent: | 4 virt | ual p | bage  | s, ar | nd   |
|----------------------|-----------------------|----------------------------|--------------------------------|------------------------------|--------------------|-----------------|--------|-------|-------|-------|------|
| ef:<br>e:            | A                     | в                          | C                              | A                            | в                  | D               | A      | D     | в     | С     | В    |
| -                    | A                     |                            |                                |                              |                    | D               |        |       |       | С     |      |
| _                    |                       | в                          |                                |                              |                    |                 | Α      |       |       |       |      |
|                      |                       |                            | С                              |                              |                    |                 |        |       | в     |       |      |
| FO:<br>hen<br>Jain I | 7 fa<br>refe<br>right | ults.<br>renci<br>awa      | ing D<br>Iy                    | , repl                       | lacin              | g A is          | bad    | choi  | ce, s | ince  | need |

| When will LRU perform badly?                    |                                              |        |        |        |       |        |      |   |   |   |   |   |   |
|-------------------------------------------------|----------------------------------------------|--------|--------|--------|-------|--------|------|---|---|---|---|---|---|
| Consider the following: A B C D A B C D A B C D |                                              |        |        |        |       |        |      |   |   |   |   |   |   |
| •                                               | LRU Performs as follows (same as FIFO here): |        |        |        |       |        |      |   |   |   |   |   |   |
|                                                 | Ref:                                         | Α      | в      | С      | D     | Α      | в    | С | D | A | в | С | D |
|                                                 | Page:                                        |        |        |        |       |        |      |   |   |   |   |   |   |
|                                                 | 1                                            | Α      |        |        | D     |        |      | С |   |   | В |   |   |
|                                                 | 2                                            |        | в      |        |       | Α      |      |   | D |   |   | С |   |
|                                                 | 3                                            |        |        | С      |       |        | в    |   |   | Α |   |   | D |
|                                                 | – Every                                      | y refe | erenc  | e is a | a pag | je fau | ılt! |   |   |   |   |   |   |
| •                                               | MIN Do                                       | es m   | nuch   | bett   | er:   |        |      |   |   |   |   |   |   |
|                                                 | Ref:                                         | Α      | в      | С      | D     | Α      | в    | С | D | Α | В | С | D |
|                                                 | Page:                                        |        |        |        |       |        |      |   |   |   |   |   |   |
|                                                 | 1                                            | Α      |        |        |       |        |      |   |   |   | в |   |   |
|                                                 | 2                                            |        | в      |        |       |        |      | С |   |   |   |   |   |
| 2/2                                             | 3                                            |        | Anthor | С      | D     |        |      |   |   |   |   |   |   |



D B С B

11.18































11.40

## **Clock Algorithms: Details Clock Algorithms Details (cont'd)** Which bits of a PTE entry are useful to us? · Do we really need a hardware-supported "use" bit? - Use: Set when page is referenced; cleared by clock algorithm - Modified: set when page is modified, cleared when page - No. Can emulate it using "invalid" bit: written to disk » Mark all pages as invalid, even if in memory - Valid: ok for program to reference this page » On read to invalid page, trap to OS - Read-only: ok for program to read page, but not modify » OS sets use bit, and marks page read-only » For example for catching modifications to code pages! Do we really need hardware-supported "modified" bit? - When clock hand passes by, reset use bit and mark page as invalid again - No. Can emulate it (BSD Unix) using read-only bit » Initially, mark all pages as read-only, even data pages » On write, trap to OS, OS sets software "modified" bit, and marks page as read-write. » Whenever page comes back in from disk, mark read-only 2/27/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012 11.39 2/27/2012 Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012









