
CS162  
Operating Systems and 
Systems Programming 

Lecture 9  
 

Address Translation"

February 15, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

9.2!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Goals for Today"
•  Address Translation Schemes!

– Segmentation!
– Paging!
– Multi-level translation!
– Paged page tables!
–  Inverted page tables!

!
!

Note: Some slides and/or pictures in the following are adapted
from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides
generated from lecture notes by Kubiatowicz."

9.3!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Virtualizing Resources"

•  Physical Reality: Processes/Threads share the same hardware!
– Need to multiplex CPU (CPU Scheduling)!
– Need to multiplex use of Memory (Today)!

•  Why worry about memory multiplexing?!
– The complete working state of a process and/or kernel is defined

by its data in memory (and registers)!
– Consequently, cannot just let different processes use the same

memory!
– Probably donʼt want different processes to even have access to

each otherʼs memory (protection)!

9.4!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Important Aspects of Memory Multiplexing"

•  Controlled overlap:!
– Processes should not collide in physical memory!
– Conversely, would like the ability to share memory when desired

(for communication)!

•  Protection:!
– Prevent access to private memory of other processes!

» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc)!

»  Kernel data protected from User programs!

•  Translation: !
– Ability to translate accesses from one address space (virtual) to

a different one (physical)!
– When translation exists, process uses virtual addresses,

physical memory uses physical addresses!
!

9.5!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Binding of Instructions and Data to
Memory"

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, loop
 …

checkit: …

Process view of memory!

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

Physical addresses!

Assume 4byte words
0x300 = 4 * 0x0C0
0x0C0 = 0000 1100 0000
0x300 = 0011 0000 0000

9.6!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Binding of Instructions and Data to
Memory"

0x0300 00000020
 … …
0x0900 8C2000C0
0x0904 0C000280
0x0908 2021FFFF
0x090C 14200242
 …
0x0A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, loop
 …

checkit: …

Process view of memory! Physical addresses!
8C2000C0
0C000340
2021FFFF
14200242

0x0900"

0xFFFF"

0x0300"

0x0000"

00000020

Physical !
Memory!

9.7!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Binding of Instructions and Data to
Memory"

0x300 00000020
 … …
0x900 8C2000C0
0x904 0C000280
0x908 2021FFFF
0x90C 14200242
 …
0x0A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, r0, loop
 …

checkit: …

Process view of memory! Physical addresses!
0x0900"

0xFFFF"

0x0300"

0x0000"

Physical!
Memory!

?!
App X!

Need address translation!!

9.8!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Binding of Instructions and Data to
Memory"

0x1300 00000020
 … …
0x1900 8C2004C0
0x1904 0C000680
0x1908 2021FFFF
0x190C 14200642
 …
0x1A00

data1: dw 32
 …

start: lw r1,0(data1)
 jal checkit

loop: addi r1, r1, -1
 bnz r1, r0, loop
 …

checkit: …

Process view of memory! Processor view of memory!
0x0900"

0xFFFF"

0x0300"

0x0000"
Memory!

App X!

8C2004C0
0C000680
2021FFFF
14200642

00000020 0x1300"

0x1900"

•  One Possible Translation!!
•  Where does translation take place?!

Compile time, Load time, or Execution time?!
!

9.9!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Multi-step Processing of a Program for Execution"
•  Preparation of a program for execution

involves components at:!
– Compile time (i.e., “gcc”)!
– Link/Load time (unix “ld” does link)!
– Execution time (e.g. dynamic libs)!

•  Addresses can be bound to final
values anywhere in this path!

– Depends on hardware support !
– Also depends on operating system!

•  Dynamic Libraries!
– Linking postponed until execution!
– Small piece of code, stub, used to

locate appropriate memory-resident
library routine!

– Stub replaces itself with the address of
the routine, and executes routine!

9.10!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example of General Address Translation"

Prog 1"
Virtual"

Address"
Space 1"

Prog 2"
Virtual"

Address"
Space 2"

Code"
Data"
Heap"
Stack"

Code"
Data"
Heap"
Stack"

Data 2"

Stack 1"

Heap 1"

OS heap & "
Stacks"

Code 1"

Stack 2"

Data 1"

Heap 2"

Code 2"

OS code"

OS data"Translation Map 1" Translation Map 2"

Physical Address Space"

9.11!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Two Views of Memory"

•  Address Space:!
– All the addresses and state a process can touch!
– Each process and kernel has different address space!

•  Consequently, two views of memory:!
– View from the CPU (what program sees, virtual memory)!
– View from memory (physical memory)!
– Translation box (MMU) converts between the two views!

•  Translation helps to implement protection!
–  If task A cannot even gain access to task Bʼs data, no way for A

to adversely affect B!
•  With translation, every program can be linked/loaded into

same region of user address space!

Physical"
Addresses"CPU" MMU"

Virtual"
Addresses"

Untranslated read or write"

9.12!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Uniprogramming (MS-DOS)"
•  Uniprogramming (no Translation or Protection)!

– Application always runs at same place in physical memory
since only one application at a time!

– Application can access any physical address!

– Application given illusion of dedicated machine by giving it
reality of a dedicated machine!

0x00000000"

0xFFFFFFFF"

Application"

Operating"
System"

Va
lid

 3
2-

bi
t"

A
dd

re
ss

es
"

9.13!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Multiprogramming (First Version)"
•  Multiprogramming without Translation or Protection!

– Must somehow prevent address overlap between threads!

– Trick: Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)!

»  Everything adjusted to memory location of program!
»  Translation done by a linker-loader!
» Was pretty common in early days!

•  With this solution, no protection: bugs in any program can
cause other programs to crash or even the OS!

0x00000000"

0xFFFFFFFF"

Application1"

Operating"
System"

Application2" 0x00020000"

9.14!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Multiprogramming (Version with Protection)"
•  Can we protect programs from each other without

translation?!

– Yes: use two special registers BaseAddr and LimitAddr to
prevent user from straying outside designated area!

»  If user tries to access an illegal address, cause an error!
– During switch, kernel loads new base/limit from TCB (Thread

Control Block)!
» User not allowed to change base/limit registers!

0x00000000"

0xFFFFFFFF"

Application1"

Operating"
System"

Application2" 0x00020000" BaseAddr=0x20000"

LimitAddr=0x10000"

9.15!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Simple Base and Bounds (CRAY-1)"

•  Could use base/limit for dynamic address translation (often
called “segmentation”) – translation happens at execution:!

– Alter address of every load/store by adding “base”!
– Generate error if address bigger than limit!

•  This gives program the illusion that it is running on its own
dedicated machine, with memory starting at 0!

– Program gets continuous region of memory!
– Addresses within program do not have to be relocated when

program placed in different region of DRAM!

DRAM"

<?"
+"

Base"

Limit"

CPU"

Virtual"
Address"

Physical"
Address"

No: Error!"

9.16!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

More Flexible Segmentation"

•  Logical View: multiple separate segments!
– Typical: Code, Data, Stack!
– Others: memory sharing, etc!

•  Each segment is given region of contiguous memory!
– Has a base and limit!
– Can reside anywhere in physical memory!

1!

3!

2!

4!

user view of!
memory space !

1!
4!

2!

3!

physical !
memory space!

1!

2!

9.17!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Implementation of Multi-Segment Model"

•  Segment map resides in processor!
– Segment number mapped into base/limit pair!
– Base added to offset to generate physical address!
– Error check catches offset out of range!

•  As many chunks of physical memory as entries!
– Segment addressed by portion of virtual address!
– However, could be included in instruction instead:!

»  x86 Example: mov [es:bx],ax. !
•  What is “V/N” (valid / not valid)?!

– Can mark segments as invalid; requires check as well!

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Offset"Seg #"Virtual"
Address"

Base2" Limit2" V"

+" Physical"
Address"

>" Error"offset"

9.18!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Example: Four Segments (16 bit addresses)"
Seg ID #" Base" Limit"

0 (code)" 0x4000" 0x0800"
1 (data)" 0x4800" 0x1400"
2 (shared)" 0xF000" 0x1000"
3 (stack)" 0x0000" 0x3000"

Offset"Seg"
0"14"13"15"

0x4000"

0x0000"

0x8000"

0xC000"

Virtual"
Address Space"

Virtual Address Format"

0x0000"

0x4800"
0x5C00"

0x4000"

0xF000"

Physical"
Address Space"

Space for"
Other Apps"

Shared with"
Other Apps"

Might "
be shared"

SegID = 0"

SegID = 1"

9.19!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Issues with simple segmentation method"

•  Fragmentation problem!
– Not every process is the same size!
– Over time, memory space becomes fragmented!

•  Hard to do inter-process sharing!
– Want to share code segments when possible!
– Want to share memory between processes!
– Helped by providing multiple segments per process!

process 6!

process 5!

process 2!

OS!

process 6!

process 5!

OS!

process 6!

process 5!

OS!

process 9!

process 6!

process 5!
process 9!

OS!

process 10!

9.20!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Schematic View of Swapping"
•  Q: What if not all processes fit in memory?!
•  A: Swapping: Extreme form of Context Switch!

–  In order to make room for next process, some or all of the
previous process is moved to disk!

– This greatly increases the cost of context-switching!

•  Desirable alternative?!
– Some way to keep only active portions of a process in

memory at any one time!
– Need finer granularity control over physical memory!

9.21!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Problems with Segmentation"

•  Must fit variable-sized chunks into physical memory!

•  May move processes multiple times to fit everything!

•  Limited options for swapping to disk!

•  Fragmentation: wasted space!
– External: free gaps between allocated chunks!
–  Internal: donʼt need all memory within allocated chunks!

9.22!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

9.23!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Paging: Physical Memory in Fixed Size Chunks"

•  Solution to fragmentation from segments?!
– Allocate physical memory in fixed size chunks (“pages”)!
– Every chunk of physical memory is equivalent!

» Can use simple vector of bits to handle allocation: 
!00110001110001101 … 110010!

»  Each bit represents page of physical memory 
!1⇒allocated, 0⇒free!

!
•  Should pages be as big as our previous segments?!

– No: Can lead to lots of internal fragmentation!
»  Typically have small pages (1K-16K)!

– Consequently: need multiple pages/segment!

9.24!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Physical Address"
Offset"

How to Implement Paging?"

•  Page Table (One per process)!
– Resides in physical memory!
– Contains physical page and permission for each virtual page!

»  Permissions include: Valid bits, Read, Write, etc!
•  Virtual address mapping!

– Offset from Virtual address copied to Physical Address!
»  Example: 10 bit offset ⇒ 1024-byte pages!

– Virtual page # is all remaining bits!
»  Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries!
»  Physical page # copied from table into physical address!

– Check Page Table bounds and permissions!

Offset"Virtual"
Page #"Virtual Address:"

Access"
Error"

>"PageTableSize"

PageTablePtr" page #0"

page #2"
page #3"
page #4"
page #5"

V,R"
page #1" V,R"

V,R,W"
V,R,W"
N"
V,R,W"

page #1" V,R"

Check Perm"

Access"
Error"

Physical"
Page #"

9.25!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

PageTablePtrB" page #0"
page #1"
page #2"
page #3"

page #5"

V,R"
N"
V,R,W"
N"

page #4" V,R"
V,R,W"

page #4" V,R"

What about Sharing?"
Offset"Virtual"

Page #"Virtual Address"
(Process A):"

PageTablePtrA" page #0"
page #1"

page #3"
page #4"
page #5"

V,R"
V,R"

page #2" V,R,W"
V,R,W"
N"
V,R,W"

Offset"Virtual"
Page #"Virtual Address"

(Process B):"

Shared"
Page"

This physical page"
appears in address"
space of both processes"

page #2" V,R,W"

9.26!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Simple Page Table Example"

a"
b"
c"
d"
e"
f"
g"
h"
i"
j"
k"
l"

0x00"

0x04"

0x08"

Virtual"
Memory"

0x00"

i"
j"
k"
l"

0x04"

0x08"

e"
f"
g"
h"

0x0C"

a"
b"
c"
d"

0x10"

Physical"
Memory"

Example (4 byte pages)"

4"
3"
1"

Page"
Table"

0"

1"

2"

0000 0000"

0001 0000"

0000 0100" 0000 1100"

0000 1000"

0000 0100"

9.27!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Page Table Discussion"

•  What needs to be switched on a context switch? !
– Page table pointer and limit!

•  Analysis!
– Pros!

»  Simple memory allocation!
»  Easy to Share!

– Con: What if address space is sparse?!
»  E.g. on UNIX, code starts at 0, stack starts at (231-1).!
» With 1K pages, need 4 million page table entries!!

– Con: What if table really big?!
» Not all pages used all the time ⇒ would be nice to have

working set of page table in memory!

•  How about combining paging and segmentation?!

9.28!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  What about a tree of tables?!
– Lowest level page table⇒memory still allocated with bitmap!
– Higher levels often segmented!

•  Could have any number of levels. Example (top segment):!

•  What must be saved/restored on context switch?!
– Contents of top-level segment registers (for this example)!
– Pointer to top-level table (page table)!

Multi-level Translation"

page #0"
page #1"

page #3"
page #4"
page #5"

V,R"
V,R"

page #2" V,R,W"
V,R,W"
N"
V,R,W"

Offset"

Physical Address"

Virtual "
Address:"

Offset"Virtual"
Page #"

Virtual"
Seg #"

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Base2" Limit2" V"

Access"
Error">"

page #2" V,R,W"
Physical"
Page #"

Check Perm"

Access"
Error"

9.29!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

What about Sharing (Complete Segment)?"
Process A" Offset"Virtual"

Page #"
Virtual"
Seg #"

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Base2" Limit2" V"

page #0"
page #1"
page #2"
page #3"
page #4"
page #5"

V,R"
V,R"
V,R,W"
V,R,W"
N"
V,R,W"

Shared Segment"

Process B" Offset"Virtual"
Page #"

Virtual"
Seg #"

Base0" Limit0" V"
Base1" Limit1" V"
Base2" Limit2" V"
Base3" Limit3" N"
Base4" Limit4" V"
Base5" Limit5" N"
Base6" Limit6" N"
Base7" Limit7" V"

Base2" Limit2" V"

9.30!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Physical"
Address:"

Offset"Physical"
Page #"

4KB

Another common example: two-level page table"
10 bits" 10 bits" 12 bits"

Virtual "
Address:"

Offset"Virtual"
P2 index"

Virtual"
P1 index"

4 bytes"

PageTablePtr"

•  Tree of Page Tables!
•  Tables fixed size (1024 entries)!

– On context-switch: save single
PageTablePtr register!

•  Valid bits on Page Table Entries !
– Donʼt need every 2nd-level table!
– Even when exist, 2nd-level tables can

reside on disk if not in use! 4 bytes

9.31!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Multi-level Translation Analysis"
•  Pros:!

– Only need to allocate as many page table entries as we need
for application!

»  In other words, sparse address spaces are easy!
– Easy memory allocation!
– Easy Sharing!

»  Share at segment or page level (need additional reference
counting)!

•  Cons:!
– One pointer per page (typically 4K – 16K pages today)!
– Page tables need to be contiguous!

» However, previous example keeps tables to exactly one page in
size!

– Two (or more, if >2 levels) lookups per reference!
»  Seems very expensive!!

9.32!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  With all previous examples (“Forward Page Tables”)!
– Size of page table is at least as large as amount of virtual

memory allocated to processes!
– Physical memory may be much less!

» Much of process space may be out on disk or not in use!

!
•  Answer: use a hash table!

– Called an “Inverted Page Table”!
– Size is independent of virtual address space!
– Directly related to amount of physical memory!
– Very attractive option for 64-bit address spaces!

•  Cons: Complexity of managing hash changes!
– Often in hardware!!

Inverted Page Table"

Offset"Virtual"
Page #"

Hash"
Table"

Offset"Physical"
Page #"

9.33!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Communication"
•  Now that we have isolated processes, how  

can they communicate?!
– Shared memory: common mapping to physical page!

»  As long as place objects in shared memory address range,
threads from each process can communicate!

» Note that processes A and B can talk to shared memory through
different addresses!

»  In some sense, this violates the whole notion of protection that
we have been developing!

–  If address spaces donʼt share memory, all inter-address space
communication must go through kernel (via system calls)!

»  Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message passing (send/receive): Can use this to build remote
procedure call (RPC) abstraction so that you can have one
program make procedure calls to another!

»  File System (read/write): File system is shared state!!

9.34!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Closing thought: Protection without Hardware"
•  Does protection require hardware support for translation and

dual-mode behavior?!
– No: Normally use hardware, but anything you can do in

hardware can also do in software (possibly expensive)!

•  Protection via Strong Typing!
– Restrict programming language so that you canʼt express

program that would trash another program!
– Loader needs to make sure that program produced by valid

compiler or all bets are off!
– Example languages: LISP, Ada, Modula-3 and Java!

•  Protection via software fault isolation:!
– Language independent approach: have compiler generate

object code that provably canʼt step out of bounds!
» Compiler puts in checks for every “dangerous” operation (loads,

stores, etc). Again, need special loader.!
»  Alternative, compiler generates “proof” that code cannot do

certain things (Proof Carrying Code)!

9.35!2/15/2012! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"
•  Memory is a resource that must be multiplexed!

– Controlled Overlap: only shared when appropriate!
–  Translation: Change virtual addresses into physical addresses!
–  Protection: Prevent unauthorized sharing of resources!

•  Simple Protection through segmentation!
–  Base+limit registers restrict memory accessible to user!
– Can be used to translate as well!

•  Page Tables!
– Memory divided into fixed-sized chunks of memory!
– Offset of virtual address same as physical address!

•  Multi-Level Tables!
–  Virtual address mapped to series of tables!
–  Permit sparse population of address space!

•  Inverted page table: size of page table related to physical mem. size!

