CS162
Operating Systems and
Systems Programming

Lecture 9

Address Translation

February 15, 2012
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

- Address Translation Schemes
— Segmentation
— Paging
— Multi-level translation
— Paged page tables
— Inverted page tables

Note: Some slides and/or pictures in the following are adapted
from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides
generated from lecture notes by Kubiatowicz.

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.2

Virtualizing Resources

- Physical Reality: Processes/Threads share the same hardware
— Need to multiplex CPU (CPU Scheduling)
— Need to multiplex use of Memory (Today)

« Why worry about memory multiplexing?

— The complete working state of a process and/or kernel is defined
by its data in memory (and registers)

— Consequently, cannot just let different processes use the same
memory

— Probably don’t want different processes to even have access to
each other’s memory (protection)

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.3

Important Aspects of Memory Multiplexing

- Controlled overlap:
— Processes should not collide in physical memory

— Conversely, would like the ability to share memory when desired
(for communication)

* Protection:

— Prevent access to private memory of other processes

» Different pages of memory can be given special behavior (Read
Only, Invisible to user programs, etc)

» Kernel data protected from User programs

 Translation:

— Ability to translate accesses from one address space (virtual) to
a different one (physical)

— When translation exists, process uses virtual addresses,
physical memory uses physical addresses

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.4

Binding of Instructions and Data to

Process view of memory

é;;alz

start:

loop:

Qeckit:

dw

1w
jal

bnz

checkit E
addi rl, rl1l, -1

32)

rl,0 (datal)

rl, loop

/

2/15/2012

Memory

Assume 4byte words
0x300 = 4 * 0x0CO
Physi| 0x0C0 0000 1100 0000
0x300 = 0011 0000 00OO

OXOBQE:?§§<<f£O

0x0900 8C2000CO
0x0904 0CO0O

0x0908 2021FFFF
0x090C 14200242

Ox

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Binding of Instructions and Data to

Process view of memory

é;;alz dw 32

loop: addi rl1l, rl,
bnz rl, loop

Qeckit:

start: 1w rl,0(datal)
jal checkit E
-1

\

/

Memory

0x0000

0x0300

Physical addresses

0x0300

0x0900
0x0904
0x0908
0x090C

Ox

00000020 0X0900

8C2000C0 Q

0C00
2021FFFF
14200242

OxFFFF

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Physical
Memory

00000020

8C2000CO
0C000340
2021FFFF
14200242

9.6

Binding of Instructions and Data to

Physical
Memory Memory
0x0000
0x0300
Process view of memory Physical addresses
étal: dw 32 \ 0x300 00000020 0X0900 App X
start: 1w rl,0(datal) oxgoo 8C2000C0 .
e E 0x904 0C000280
loop: addi rl, rl, -1 0x908 2021FFFF
bnz rl, r0, loop 0x90C 14200242
Qeckit: / O;OAOO
0xFFFF
Need address translation!
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.7

Binding of Instructions and Data to

Process view of memory

fé;;alz

Qeckit:

~

/

Memory

0x0000

0x0300

Processor view of memory

dw 32 0x1300
start: 1w rl,0(datal) 0x1§oo
jal checkit E 0x1904
loop: addi rl1l, rl1, -1 0x1908
bnz rl, r0, loop 0x190C

0x

* One Possible Translation!

* Where does translation take place”? OoxFFFF
Compile time, Load time, or Execution time?

2/15/2012

00000020 0X0900

8C2004cC0
0C00

2021FFFF
14200642

0x1300

OxiQOO

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

Memory

App X

00000020

8C2004CO0
0C000680
2021FFFF
14200642

9.8

Multi-step Processing of a Program for Execution

Preparation of a program for execution
Involves components at:

— Compile time (i.e., “gcc”)
— Link/Load time (unix “ld” does link)
— Execution time (e.g. dynamic libs)

Addresses can be bound to final
values anywhere in this path

— Depends on hardware support
— Also depends on operating system

Dynamic Libraries
— Linking postponed until execution

— Small piece of code, stub, used to
locate appropriate memory-resident
library routine

— Stub replaces itself with the address of
the routine, and executes routine

other
object
modules

system
library

dynamicall
loaded
system
library

dynamic
linking

source
program

compiler or
assembler

object
module

linkage
editor

load
module

loader

h 4

in-memory
binary
memory
image

compile
time

load
time

executior
> time (run

time)

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©U

Example of General Address Translation

Prog 2

Virtual Virtual
Address Address
Space 1 Space 2

Translation Map 1 Translation Map 2

Physical Address SLPace

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.10

Two Views of Memory

Virtual
Addresses

Physical ¢
Addresses §

Untranslated read or write

Address Space:

— All the addresses and state a process can touch

— Each process and kernel has different address space
Consequently, two views of memory:

— View from the CPU (what program sees, virtual memory)

— View from memory (physical memory)

— Translation box (MMU) converts between the two views
Translation helps to implement protection

— If task A cannot even gain access to task B’s data, no way for A
to adversely affect B

With translation, every program can be linked/loaded into
same region of user address space

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.11

Uniprogramming (MS'DOS) Starting MS-DOS. ..

C:\>

« Uniprogramming (no Translation or Protection)

— Application always runs at same place in physical memory
since only one application at a time

— Application can access any physical address

OxFFFFFFFF
Operating
System —
S Q
S <
Application
0x00000000

— Application given illusion of dedicated machine by giving it
reality of a dedicated machine

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.12

Multiprogramming (First Version)

- Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating
System

Application2 0x00020000

Application1

0x00000000

— Trick: Use Loader/Linker: Adjust addresses while program
loaded into memory (loads, stores, jumps)

» Everything adjusted to memory location of program
» Translation done by a linker-loader
» Was pretty common in early days

+ With this solution, no protection: bugs in any program can

cause other programs to crash or even the OS
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.13

Multiprogramming (Version with Protection)

- Can we protect programs from each other without
translation?

OxFFFFFFFF
Operating
System

« | LimitAddr=0x10000 |

| BaseAddr=0x20000 |

Application2 | 0x00020000

Applicationt
0x00000000

— Yes: use two special reqgisters BaseAddr and LimitAddr to
prevent user from straying outside designated area
» |f user tries to access an illegal address, cause an error

— During switch, kernel loads new base/limit from TCB (Thread
Control Block)

» User not allowed to change base/limit registers

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.14

Simple Base and Bounds (CRAY-1)

_ Base
Virtual |

Address

‘ CPU DRAM ‘

Physical
Address

No: Error!

« Could use base/limit for dynamic address translation (often
called “segmentation”) — translation happens at execution:

— Alter address of every load/store by adding “base”
— Generate error if address bigger than limit
 This gives program the illusion that it is running on its own
dedicated machine, with memory starting at 0
— Program gets continuous region of memory

— Addresses within program do not have to be relocated when
program placed in different region of DRAM

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.15

More FIeX|bIe Segmentation

1
subroutine stack i 4
symbol
table
2
Sqrt
main .
program - 3
: user view of physical
logical address : memory space memory space

- Logical View: multiple separate segments
— Typical: Code, Data, Stack
— Others: memory sharing, etc

- Each segment is given region of contiguous memory
— Has a base and limit

2/15/20_120an reSIdAentr?épylgv .Qgerp% ellpd% %lI(% IS1 U8I5y8pring 2012 9.16

Implementation of Multi-Segment Model

Virtual Offset |} offset

Address Base0| Limit0
Limit1

Error

Base3| Limit3

\'
\'/
hysical
Base4| Limit4 |V
N
N
'

Address

Base5| Limithb
Base6| Limit6
Base7| Limit7

- Segment map resides in processor
— Segment number mapped into base/limit pair
— Base added to offset to generate physical address
— Error check catches offset out of range

« As many chunks of physical memory as entries
— Segment addressed by portion of virtual address

— However, could be included in instruction instead:
» X86 Example: mov [es:bx],ax.

. What is “V/N” (valid / not valid)?

— Can mark segments as invalid; requires check as well
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.17

Example: Four Segments (16 bit addresses)

Seg ID # Base Limit

[Seq] Offset | 0 (code) | 0x4000 |0x0800
15 14 13 0 1 (data) 0x4800 | 0x1400
Virtual Address Format 2 (shared) | 0xFO000 | 0x1000
3 (stack) 0x0000 | 0x3000
0x0000 Seng =0 0x0000
SegID =1 0x4000 Might
0x4000 > J—
X | > 0x4800 be shared
0x5C00
0x8000
Space for
0xC000 Other Apps
0xF000 Shared with
_ _ Other Apps
Virtual Physical
Address Space Address Space

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.18

Issues with simple segmentation method

process 6 process 6 process 6 process 6
process 5 process 5 process 5 process 5

process 9 process 9
process 2 process 10
OS 0Ss (O OR)

* Fragmentation problem
— Not every process is the same size
— QOver time, memory space becomes fragmented
- Hard to do inter-process sharing
— Want to share code segments when possible
— Want to share memory between processes
— Helped by providing multiple segments per process

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.19

Schematic View of Swapping

« Q: What if not all processes fit in memory?

- A: Swapping: Extreme form of Context Switch

—In or_der to make room for next process, some or all of the
previous process is moved to disk

— This greatly increases the cost of context-switching

operating _//
system
process P,
@ swap out
) process P,
@ swap in
—_—]
BE.
user
phe et backing store
main memory

« Desirable alternative?

— Some way to keep only active portions of a process in
memory at any one time

— Need finer granularity control over physical memory
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.20

Problems with Segmentation

Must fit variable-sized chunks into physical memory

May move processes multiple times to fit everything

Limited options for swapping to disk

Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don’t need all memory within allocated chunks

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.21

5min Break

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.22

Paging: Physical Memory in Fixed Size Chunks

- Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)

— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 ... 110010

» Each bit represents page of physical memory
1=allocated, O=free

- Should pages be as big as our previous segments?

— No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)
— Consequently: need multiple pages/segment

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.23

How to Implement Paging?

Virtual Address:

Offset

PageTablePtr
PageTableSize
Access
Error

_page #0 | V.R

| page #1

v:R,WI

| page #2

 page #3 | V.R,.W|
page #4 |N__ |
page #5 | V,R,.W|

- Page Table (One per process)
— Resides in physical memory

— Contains physical page and permission for each virtual page
» Permissions include: Valid bits, Read, Write, etc

Virtual address mapping

1

[Paue g Offset

Physical Address
Check Perm

v

Access
Error

— Offset from Virtual address copied to Physical Address

» Example: 10 bit offset = 1024-byte pages
— Virtual page # is all remaining bits

» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

— Check Page Table bounds and permissions

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.24

What about Sharing?

Offset |

Virtual Address
(Process A):

PageTablePtrA

page #0_|V.R |

Shared
Page

| PageTablePtrB |~

This physical page
appears in address
space of both processes

 page #4
 page #5 | V,R,W|

—~

Virtual Address - Offset |

(Process B):
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.25

Simple Page Table Example

Example (4 byte pages)

L ox00 [T 0000 0000 0x00 :
: b ‘

5 o o — 200100003 ox04 [T

: 4 ;

! ox04 [9—] 00000100 o . S| 0000 110 3

: f .

: ; 2[5 0000 010(‘ oxo8 H—

: h | ‘ :

i 0x08 0000 1000 Page | oxoC |2

: j Table f

B ;

: . —> ox10 [

: Virtual b
Memory c
Physical
: Memory

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.26

Page Table Discussion

« What needs to be switched on a context switch?
— Page table pointer and limit

- Analysis
— Pros

» Simple memory allocation
» Easy to Share

— Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0, stack starts at (237-1).
» With 1K pages, need 4 million page table entries!

— Con: What if table really big?

» Not all pages used all the time = would be nice to have
working set of page table in memory

* How about combining paging and segmentation?

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.27

Multi-level Translation
- What about a tree of tables?
— Lowest level page table=memory still allocated with bitmap
— Higher levels often segmented

« Could have any number of levels. Example (top segment):

Virtual

Offset I
Address: l
page #0 | V.R
page #1 | V.R - Offset
page #2_| V.3, Physical Add
Limi page #3 V.R.W ysica ress
gasei ::'"":4 N page #4 |N
ase imi
VR,
Base5| Limit5 page #5 w Check Perm)
Base6| Limit6 | N ¥
Base7| Limit7 |V —JAccess Access
Error Error

- What must be saved/restored on context switch?
— Contents of top-level segment registers (for this example)

— Pointer to top-level table (page table)
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.28

What about Sharing (Complete Segment)?

Process A

Process B

2/15/2012

Offset

Limit0

Limit2

Limit3

Limit4

Limit5

Limit6

Limit7

ZZ<Z<K<<

| page #0 | V,.R
' page #1 | V,R
 page #2 | V,R,W|
page #3 | V.R,W|
page #4 |N__ |
page #5_| .R,W|
Shared Segment

Base)| Limit0 | V

Basel| Limitl | V

Base?2 Limit2| V

Base3| Limit3 | N

Based4| Limit4 | V

Base5| Limit5| N

Base6| Limit6 | N

Base7| Limit7 | V

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012

9.29

Another common example: two-level page table

Physical
10 bits_10bits _ 12bits __ pi'ocs. SULE |
Virtual Offset I
Address:
4KB
I PageTabIePtr EEEREEEE

—> 4 bytes «—

- Tree of Page Tables i
- Tables fixed size (1024 entries)

— On context-switch: save single — L
—

PageTablePtr register
- Valid bits on Page Table Entries
— Don’t need every 2"-level table
— Even when exist, 2"°-level tables can_, 4 pytes

reside on disk if not in use
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.30

I

Multi-level Translation Analysis

* Pros:

— Only need to allocate as many page table entries as we need
for application

» In other words, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing

» Share at segment or page level (need additional reference
counting)

- Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous
» However, previous example keeps tables to exactly one page in
Slze
— Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.31

Inverted Page Table
- With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as amount of virtual
memory allocated to processes

— Physical memory may be much less
» Much of process space may be out on disk or not in use

Offset

Offset

- Answer: use a hash table
— Called an “Inverted Page Table”
— Size is independent of virtual address space
— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces
- Cons: Complexity of managing hash changes

— Often in hardware!
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.32

Communication

- Now that we have isolated processes, how
can they communicate?

— Shared memory: common mapping to physical page

» As long as place objects in shared memory address range,
threads from each process can communicate

» Note that processes A and B can talk to shared memory through
different addresses

» In some sense, this violates the whole notion of protection that
we have been developing

— If address spaces don’t share memory, all inter-address space
communication must go through kernel (via system calls)

» Byte stream producer/consumer (put/get): Example,
communicate through pipes connecting stdin/stdout

» Message passing (send/receive): Can use this to build remote
procedure call (RPC) abstraction so that you can have one
program make procedure calls to another

» File System (read/write): File system is shared state!
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.33

Closing thought: Protection without Hardware

- Does protection require hardware support for translation and
dual-mode behavior?

— No: Normally use hardware, but anythin% you can do in
hardware can also do in software (possibly expensive)

» Protection via Strong Typing

— Restrict programming language so that you can’t express
program that would trash another program

— Loader needs to make sure that program produced by valid
compiler or all bets are off

— Example languages: LISP, Ada, Modula-3 and Java

* Protection via software fault isolation:

— Language independent approach: have compiler generate
object code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation (loads,
stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot do
certain things (Proof Carrying Code)
2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.34

Summary

- Memory is a resource that must be multiplexed
— Controlled Overlap: only shared when appropriate
— Translation: Change virtual addresses into physical addresses
— Protection: Prevent unauthorized sharing of resources

- Simple Protection through segmentation
— Base+limit registers restrict memory accessible to user
— Can be used to translate as well

- Page Tables
— Memory divided into fixed-sized chunks of memory
— Offset of virtual address same as physical address

- Multi-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space

* Inverted page table: size of page table related to physical mem. size

2/15/2012 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 9.35

