
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 8  
 

Thread Scheduling"

February 13, 2012"
Anthony D. Joseph and Ion Stoica"

http://inst.eecs.berkeley.edu/~cs162"

Lec 8.2!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Goals for Today"

•  Scheduling Policy goals!
•  Policy Options!
•  Implementation Considerations!

!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz."

Lec 8.3!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

CPU Scheduling"

•  Earlier, we talked about the life-cycle of a thread!
– Active threads work their way from Ready queue to Running

to various waiting queues.!
•  Question: How is the OS to decide which of several

threads to take off a queue?!
– Obvious queue to worry about is ready queue!
– Others can be scheduled as well, however!

•  Scheduling: deciding which threads are given access to
resources!

Lec 8.4!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Scheduling Assumptions"
•  CPU scheduling big area of research in early 70ʼs!
•  Many implicit assumptions for CPU scheduling:!

– One program per user!
– One thread per program!
– Programs are independent!

•  Clearly, these are unrealistic but they simplify the problem so
it can be solved!

– For instance: is “fair” about fairness among users or programs? !
»  If I run one compilation job and you run five, you get five times as

much CPU on many operating systems!
•  The high-level goal: Dole out CPU time to optimize some

desired parameters of system!

USER1 USER2 USER3 USER1 USER2

Time

Page 2

Lec 8.5!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Assumption: CPU Bursts"

•  Execution model: programs alternate between bursts of CPU
and I/O!

– Program typically uses the CPU for some period of time, then
does I/O, then uses CPU again!

– Each scheduling decision is about which job to give to the CPU
for use by its next CPU burst!

– With timeslicing, thread may be forced to give up CPU before
finishing current CPU burst!

Weighted toward small bursts!

Lec 8.6!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Scheduling Policy Goals/Criteria"
•  Minimize Response Time!

– Minimize elapsed time to do an operation (or job)!
– Response time is what the user sees:!

»  Time to echo a keystroke in editor!
»  Time to compile a program!

•  Maximize Throughput!
– Maximize operations (or jobs) per second!
– Throughput related to response time, but not identical:!

» Minimizing response time will lead to more context switching than
if you only maximized throughput!

– Two parts to maximizing throughput!
» Minimize overhead (for example, context-switching)!
»  Efficient use of resources (CPU, disk, memory, etc)!

•  Fairness!
– Share CPU among users in some equitable way!
– Fairness is not minimizing average response time:!

»  Better average response time by making system less fair!

Lec 8.7!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

First-Come, First-Served (FCFS) Scheduling"
•  First-Come, First-Served (FCFS)!

–  Also “First In, First Out” (FIFO) or “Run until done”!
»  In early systems, FCFS meant one program  

scheduled until done (including I/O)!
» Now, means keep CPU until thread blocks !

•  Example: !Process !Burst Time  
!P1 !24  
! P2 !3  
!P3 ! 3 !

–  Suppose processes arrive in the order: P1 , P2 , P3  The Gantt Chart for the schedule is: 
 
 
 
 
!

–  Waiting time for P1 = 0; P2 = 24; P3 = 27!
–  Average waiting time: (0 + 24 + 27)/3 = 17!
–  Average Completion time: (24 + 27 + 30)/3 = 27!

•  Convoy effect: short process behind long process!

P1! P2! P3!

24! 27! 30!0!

Lec 8.8!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

FCFS Scheduling (Cont.)"
•  Example continued:!

–  Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 
!

–  Waiting time for P1 = 6; P2 = 0; P3 = 3!
–  Average waiting time: (6 + 0 + 3)/3 = 3!
–  Average Completion time: (3 + 6 + 30)/3 = 13!

•  In second case:!
–  Average waiting time is much better (before it was 17)!
–  Average completion time is better (before it was 27) !

•  FCFS Pros and Cons:!
–  Simple (+)!
–  Short jobs get stuck behind long ones (-)!

»  Safeway: Getting milk, always stuck behind cart full of small items!

P1!P3!P2!

6!3! 30!0!

Page 3

Lec 8.9!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Round Robin (RR)"
•  FCFS Scheme: Potentially bad for short jobs!!

– Depends on submit order!
–  If you are first in line at supermarket with milk, you donʼt care

who is behind you, on the other hand…!
•  Round Robin Scheme!

– Each process gets a small unit of CPU time  
(time quantum), usually 10-100 milliseconds!

– After quantum expires, the process is preempted  
and added to the end of the ready queue!

– n processes in ready queue and time quantum is q ⇒!
»  Each process gets 1/n of the CPU time !
»  In chunks of at most q time units !
» No process waits more than (n-1)q time units!

•  Performance!
– q large ⇒ FCFS!
– q small ⇒ Interleaved!
– q must be large with respect to context switch, otherwise

overhead is too high (all overhead)!
Lec 8.10!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Example of RR with Time Quantum = 20"
•  Example: !Process ! !Burst Time  

! P1 ! !53  
! P2 ! ! 8  
! P3 ! !68  
! P4 ! ! 24!

–  The Gantt chart is:!

–  Waiting time for !P1=(68-20)+(112-88)=72 ! ! ! !
! P2=(20-0)=20  

! P3=(28-0)+(88-48)+(125-108)=85  
! P4=(48-0)+(108-68)=88!

–  Average waiting time = (72+20+85+88)/4=66¼!
–  Average completion time = (125+28+153+112)/4 = 104½!

•  Thus, Round-Robin Pros and Cons:!
–  Better for short jobs, Fair (+)!
–  Context-switching time adds up for long jobs (-)!

!

P1! P2! P3! P4! P1! P3! P4! P1! P3! P3!

0! 20! 28! 48! 68! 88! 108! 112! 125! 145!153!

Lec 8.11!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Round-Robin Discussion"
•  How do you choose time slice?!

– What if too big?!
» Response time suffers!

– What if infinite (∞)?!
» Get back FIFO!

– What if time slice too small?!
»  Throughput suffers! !

•  Actual choices of timeslice:!
–  Initially, UNIX timeslice one second:!

» Worked ok when UNIX was used by one or two people.!
» What if three compilations going on? 3 seconds to echo each

keystroke!!
–  In practice, need to balance short-job performance and long-

job throughput:!
»  Typical time slice today is between 10ms – 100ms!
»  Typical context-switching overhead is 0.1ms – 1ms!
» Roughly 1% overhead due to context-switching!
!

Lec 8.12!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Comparisons between FCFS and Round Robin"
•  Assuming zero-cost context-switching time, is RR always

better than FCFS?!
•  Simple example: !10 jobs, each takes 100s of CPU time  

!RR scheduler quantum of 1s 
!All jobs start at the same time!

•  Completion Times:!

– Both RR and FCFS finish at the same time!
– Average response time is much worse under RR!!

»  Bad when all jobs same length!
•  Also: Cache state must be shared between all jobs with RR

but can be devoted to each job with FCFS!
– Total time for RR longer even for zero-cost switch!!

Job #" FIFO" RR"
1! 100! 991!
2! 200! 992!
…! …! …!
9! 900! 999!

10! 1000! 1000!

Page 4

Lec 8.13!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

 !

Quantum!

Completion!
Time!

Wait!
Time!

Average!P4!P3!P2!P1!

Earlier Example with Different Time Quantum"
P2!
[8]!

P4!
[24]!

P1!
[53]!

P3!
[68]!

0! 8! 32! 85! 153!

Best FCFS:"

62!57!85!22!84!Q = 1!

104½!112!153!28!125!Q = 20!

100½!81!153!30!137!Q = 1!

66¼ !88!85!20!72!Q = 20!

31¼!8!85!0!32!Best FCFS!

121¾!145!68!153!121!Worst FCFS!

69½!32!153!8!85!Best FCFS!
83½!121!0!145!68!Worst FCFS!

95½!80!153!16!133!Q = 8!

57¼!56!85!8!80!Q = 8!

99½!92!153!18!135!Q = 10!

99½!82!153!28!135!Q = 5!

61¼!68!85!10!82!Q = 10!

61¼!58!85!20!82!Q = 5!

P1!

0! 8! 56!

P2! P3! P4! P1! P3! P4! P1! P3! P4! P1! P3! P1! P3! P3!P3!

16" 24! 32! 40! 48! 64! 72! 80" 88! 96! 104! 112!

P1! P3! P1!
120! 128! 133"141!149!

P3!
153"

Lec 8.14!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Administrivia"

•  Git/Github Helpsession from CSUA!
– Wednesday 2/15, 6-8pm, 380 Soda!

»  Presentation 6:10-7, individual troubleshooting help from 7-8!
– Learn about source control, git, setting up your Github account,

and using GitHub for your CSUA Hackathon submission !!
– Bring laptops!
– This helpsession will be especially useful for those attending

CSUA's Hackathon on Friday. http://tinyurl.com/csuaHackathon!

Lec 8.15!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

5min Break"

Lec 8.16!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

What if we Knew the Future?"
•  Could we always mirror best FCFS?!
•  Shortest Job First (SJF):!

– Run whatever job has the least amount of  
computation to do!

•  Shortest Remaining Time First (SRTF):!
– Preemptive version of SJF: if job arrives and has a shorter

time to completion than the remaining time on the current job,
immediately preempt CPU!

•  These can be applied either to a whole program or the
current CPU burst of each program!

–  Idea is to get short jobs out of the system!
– Big effect on short jobs, only small effect on long ones!
– Result is better average response time!

Page 5

Lec 8.17!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Discussion"

•  SJF/SRTF are the best you can do at minimizing average
response time!

– Provably optimal (SJF among non-preemptive, SRTF among
preemptive)!

– Since SRTF is always at least as good as SJF, focus on
SRTF!

•  Comparison of SRTF with FCFS and RR!
– What if all jobs the same length?!

»  SRTF becomes the same as FCFS (i.e., FCFS is best can do if
all jobs the same length)!

– What if jobs have varying length?!
»  SRTF (and RR): short jobs not stuck behind long ones!

Lec 8.18!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Example to illustrate benefits of SRTF"

•  Three jobs:!!
– A,B: CPU bound, each run for a week 

C: I/O bound, loop 1ms CPU, 9ms disk I/O!
–  If only one at a time, C uses 90% of the disk, A or B could use

100% of the CPU!
•  With FIFO:!

– Once A or B get in, keep CPU for one week each!
•  What about RR or SRTF?!

– Easier to see with a timeline!

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

Lec 8.19!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

RR vs. SRTF"

Cʼs "
I/O"

CABAB…" C"

Cʼs "
I/O"

RR 1ms time slice"

Cʼs "
I/O"

Cʼs "
I/O"

C"A" B"C"

RR 100ms time slice"

Cʼs "
I/O"

A"C"

Cʼs "
I/O"

A"A"

SRTF"

Disk Utilization:"
~90% but lots of

wakeups!"

Disk Utilization:"
90%"

Disk Utilization:"
9/201 ~ 4.5%"

Lec 8.20!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

SRTF Further discussion"
•  Starvation!

– SRTF can lead to starvation if many small jobs!!
– Large jobs never get to run!

•  Somehow need to predict future!
– How can we do this? !
– Some systems ask the user!

» When you submit a job, have to say how long it will take!
»  To stop cheating, system kills job if takes too long!

– But: even non-malicious users have trouble predicting runtime
of their jobs!

•  Bottom line, canʼt really know how long job will take!
– However, can use SRTF as a yardstick  

for measuring other policies!
– Optimal, so canʼt do any better!

•  SRTF Pros & Cons!
– Optimal (average response time) (+)!
– Hard to predict future (-)!
– Unfair (-)!

Page 6

Lec 8.21!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Predicting the Length of the Next CPU Burst"
•  Adaptive: Changing policy based on past behavior!

– CPU scheduling, in virtual memory, in file systems, etc.!
– Works because programs have predictable behavior!

»  If program was I/O bound in past, likely in future!
»  If computer behavior were random, wouldnʼt help!

•  Example: SRTF with estimated burst length!
– Use an estimator function on previous bursts:  

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.  
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)!

– Function f could be one of many different time series
estimation schemes (Kalman filters, etc.)!

– Example:  
Exponential averaging 
τn = αtn-1+(1-α)τn-1  with (0<α≤1)!

 
!

Lec 8.22!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Multi-Level Feedback Scheduling"

•  Another method for exploiting past behavior!
– First used in Cambridge Time Sharing System (CTSS)!
– Multiple queues, each with different priority!

» Higher priority queues often considered “foreground” tasks!
– Each queue has its own scheduling algorithm!

»  e.g., foreground – RR, background – FCFS!
»  Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc.)!
•  Adjust each jobʼs priority as follows (details vary)!

– Job starts in highest priority queue!
–  If timeout expires, drop one level!
–  If timeout doesnʼt expire, push up one level (or to top)!

Long-Running "
Compute tasks "

demoted to  
low priority"

Lec 8.23!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Scheduling Details"

•  Result approximates SRTF:!
– CPU bound jobs drop like a rock!
– Short-running I/O bound jobs stay near top!

•  Scheduling must be done between the queues!
– Fixed priority scheduling: !

»  Serve all from highest priority, then next priority, etc.!
– Time slice:!

»  Each queue gets a certain amount of CPU time !
»  e.g., 70% to highest, 20% next, 10% lowest!

Lec 8.24!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Countermeasure"

•  Countermeasure: user action that can foil intent of the OS
designer!

– For multilevel feedback, put in a bunch of meaningless I/O to
keep jobʼs priority high!

– Of course, if everyone did this, wouldnʼt work!!

•  Ex: MIT Othello game project (simpler version of Go game)!
– Computer playing against competitorʼs computer, so key was to

do computing at higher priority the competitors. !
» Cheater put in printfʼs, ran much faster!!

Page 7

Lec 8.25!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Scheduling Fairness"
•  What about fairness?!

– Strict fixed-priority scheduling between queues is unfair (run
highest, then next, etc):!

»  Long running jobs may never get CPU !
»  In Multics, shut down machine, found 10-year-old job!

– Must give long-running jobs a fraction of the CPU even when
there are shorter jobs to run!

– Tradeoff: fairness gained by hurting average response time!!

•  How to implement fairness?!
– Could give each queue some fraction of the CPU !

» What if one long-running job and 100 short-running ones?!
»  Like express lanes in a supermarket—sometimes express lanes

get so long, get better service by going into one of the other lines!
– Could increase priority of jobs that donʼt get service!

» What is done in UNIX!
»  This is ad hoc—what rate should you increase priorities?!

Lec 8.26!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Lottery Scheduling"
•  Yet another alternative: Lottery Scheduling!

– Give each job some number of lottery tickets!
– On each time slice, randomly pick a winning ticket!
– On average, CPU time is proportional to number of tickets

given to each job!

•  How to assign tickets?!
– To approximate SRTF, short running jobs get more, long

running jobs get fewer!
– To avoid starvation, every job gets at least one ticket

(everyone makes progress)!

•  Advantage over strict priority scheduling: behaves
gracefully as load changes!

– Adding or deleting a job affects all jobs proportionally,
independent of how many tickets each job possesses!

Lec 8.27!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Lottery Scheduling Example"

•  Lottery Scheduling Example!
– Assume short jobs get 10 tickets, long jobs get 1 ticket!

– What if too many short jobs to give reasonable  
response time? !

»  In UNIX, if load average is 100, hard to make progress!
» One approach: log some user out!

short jobs/"
long jobs"

% of CPU each
short jobs gets"

% of CPU each
long jobs gets"

1/1! 91%! 9%!
0/2! N/A! 50%!
2/0! 50%! N/A!

10/1! 9.9%! 0.99%!
1/10! 50%! 5%!

Lec 8.28!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

How to Evaluate a Scheduling algorithm?"
•  Deterministic modeling!

– Takes a predetermined workload and compute the
performance of each algorithm for that workload!

•  Queuing models!
– Mathematical approach for handling stochastic workloads!

•  Implementation/Simulation:!
– Build system which allows actual algorithms to be run against

actual data. Most flexible/general.!

Page 8

Lec 8.29!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

A Final Word On Scheduling"
•  When do the details of the scheduling policy and fairness

really matter?!
– When there arenʼt enough resources to go around!

•  When should you simply buy a faster computer?!
–  (Or network link, or expanded highway, or …)!
– One approach: Buy it when it will pay  

for itself in improved response time!
»  Assuming youʼre paying for worse  

response time in reduced productivity,  
customer angst, etc…!

» Might think that you should buy a  
faster X when X is utilized 100%,  
but usually, response time goes  
to infinity as utilization⇒100%!

•  An interesting implication of this curve:!
– Most scheduling algorithms work fine in the “linear” portion of

the load curve, fail otherwise!
– Argues for buying a faster X when hit “knee” of curve!

Utilization"

R
esponse tim

e"

100%
"

Lec 8.30!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Summary"

•  Scheduling: selecting a waiting process from the ready queue
and allocating the CPU to it!

•  FCFS Scheduling:!
– Run threads to completion in order of submission!
– Pros: Simple (+)!
– Cons: Short jobs get stuck behind long ones (-)!

•  Round-Robin Scheduling: !
– Give each thread a small amount of CPU time when it

executes; cycle between all ready threads!
– Pros: Better for short jobs (+)!
– Cons: Poor when jobs are same length (-)!

!
!

Lec 8.31!02/13/12" Anthony D. Joseph and Ion Stoica, CS162 ©UCB Spring 2012!

Summary (contʼd)"
•  Shortest Job First (SJF)/Shortest Remaining Time First

(SRTF):!
– Run whatever job has the least amount of computation to do/

least remaining amount of computation to do!
– Pros: Optimal (average response time) !
– Cons: Hard to predict future, Unfair!

•  Multi-Level Feedback Scheduling:!
– Multiple queues of different priorities!
– Automatic promotion/demotion of process priority in order to

approximate SJF/SRTF!

•  Lottery Scheduling:!
– Give each thread a priority-dependent number of tokens (short

tasks ⇒ more tokens)!
– Reserve a minimum number of tokens for every thread to

ensure forward progress/fairness!

