CS162
Operating Systems and
Systems Programming

Lecture 6

Programming Techniques and Teams

February 6, 2012
Anthony D. Joseph and lon Stoica
http://inst.eecs.berkeley.edu/~cs162

The Role of Software Engineering

-+ Developing software efficiently
» Minimize time
» Minimize dollars
» Minimize ...

« First, we’ll go through some tips for working in a team

« Then, we’ll talk about more formal processes

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.3

Page 1

Goals for Today

+ Tips for Programming in a Project Team
» The Software Process

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, lon Stoica, Doug Tygar, and David Wagner.

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.2

Tips for Programming in a Project
Team

+ Big projects require more than one
person (or long, long, long time)

— Big OS: thousands of person-years!

+ It’s very hard to make software
project teams work correctly
— Doesn’t seem to be as true of big
construction projects

» Empire state building finished in one
year: staging iron production thousands
of miles away

» Or the Hoover dam: built towns to hold

workers
You just have
to get your
synchronization right!”
2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.4




Big Projects
+ What is a big project?
— Time/work estimation is hard

— Programmers are eternal optimistics
(it will only take two days)!

» This is why we bug you about
starting the project early

+ Can a project be efficiently partitioned?
— Partitionable task decreases in time as
you add people

— But, if you require communication:
» Time reaches a minimum bound
» With complex interactions, time increases!

— Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people
» Project takes even more time!

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec6.5

Communication

+ More people mean more communication
— Changes have to be propagated to more people
— Think about person writing code for most
fundamental component of system: everyone depends
on them!
+ Miscommunication is common
—“Index starts at 0?7 | thought you said 1!”
+ Who makes decisions? [poll]
— Individual decisions are fast but trouble
— Group decisions take time
— Centralized decisions require a big picture view (someone who
can be the “system architect”)
+ Often designating someone as the system architect can be a
good thing
— Better not be clueless
— Better have good people skills
— Better let other people do work
2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.7

Page 2

Techniques for Partitioning Tasks

+ Functional
— Person A implements threads, Person B implements
semaphores, Person C implements locks...
— Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes
» Story: Large airline company spent $200 million on a new
scheduling and booking system. Two teams “working together.”
After two years, went to merge software. Failed! Interfaces had
changed (documented, but no one noticed). Result: would cost
another $200 million to fix.
+ Task
— Person A designs, Person B writes code, Person C tests
— May be difficult to find right balance, but can focus on each
person’s strengths (Theory vs systems hacker)
— Since Debugging is hard, Microsoft has two testers for each
programmer
» Most CS162 project teams are functional, but people have

had success with task-based divisions [ oII]
2/6/1 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.6

Coordination
» More people = no one can make all meetings!
— They miss decisions and associated discussion

— Example from earlier class: one person missed
meetings and did something group had rejected

— Why do we limit groups to 5 people?
» You would never be able to schedule meetings otherwise
— Why do we require 4 people minimum?
» You need to experience groups to get ready for real world
» People have different work styles
— Some people work in the morning, some at night
— How do you decide when to meet or work together?
+ What about project slippage?
— It will happen, guaranteed!
— Ex: everyone busy but not talking. One person way behind.
No one knew until very end — too late!
+ Hard to add people to existing group
— Members have already figured out how to work together

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.8




How to Make it Work?

+ People are human. Get over it.

— People will make mistakes, miss meetings, miss deadlines, etc.

You need to live with it and adapt
— It is better to anticipate problems than clean up afterwards.
+ Document, document, document
— Why Document?
» Expose decisions and communicate to others
» Easier to spot mistakes early
» Easier to estimate progress
— What to document?
» Everything (but don’t overwhelm people or no one will réad)
— Standardize!

» One programming format: variable naming conventions, tab
indents,etc.

» Comments (Requires, effects, modifies) —javadoc?

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.9

Use Software Tools

+ Source revision control software (CVS, SVN, git
— Easy to go back and see history
— Figure out where and why a bug got introduced
— Communicates changes to everyone (use RCS’s features)
+ Use an Integrated Development Environment
— Structured development model
+ Use automated testing tools
— Write scripts for non-interactive software
— Use “expect” for interactive software

— Microsoft rebuilt Vista, W7 kernels every night with the day’s
changes. Everyone ran/tested the latest software

+ Use E-mail and instant messaging consistently to leave a
history trail

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.1

Page 3

Suggested Documents for You to
Maintain

+ Project objectives: goals, constraints, and priorities
- Specifications: the manual plus performance specs

— This should be the first document generated and the last
one finished

* Meeting notes
— Document all decisions
— You can often cut & paste for the design documents
Schedule: What is your anticipated timing?
— This document is critical!
+ Organizational Chart
— Who is responsible for what task?

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.10

Integrated Development
Environments
« Structured Compile-Edit-Debug environment

— Organizes top-level projects, folders, and
files in a hierarchical structure

— Makes it easy to find uses of variables, procedures, ...
— Formats code for easier interaction
— Interacts with version control infrastructure
» Projects consist of:
— Files, interdependencies, configurations, version control
information, etc.
— May also manage non-project information:

» Global preferences, windows layout, search and navigation
history, local change history (like version control, but local
changes only)

+ Different IDEs support different languages

— MS Visual Studio (C/C++/C#/.NET), IBM Eclipse (Java)

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec6.12




Test Continuously

* Integration tests all the time, not at 11pm
on due date!

— Write dummy stubs with simple functionality
» Let’s people test continuously, but more work
— Schedule periodic integration tests

» Get everyone in the same room, check out code, build, and test.

» Don’t wait until it is too late!
+ Testing types:

— Unit tests: white-/black-box check each module in isolation
(use JUnit?)

— Daemons: subject code to exceptional cases
— Random testing: Subject code to random timing changes
+ Test early, test later, test again

— Tendency is to test once and forget; what if something
changes in some other part of the code?

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec6.13

The Software Process

+ Most projects follow recognized stages
— From inception to completion

+ These steps are a “software process”
— Arrived at by trial and (lots of) error

* Process = how things are done
— In contrast to what is done

+ Ideal Project (to me)
— Core functionality is reasonably attainable
— But extra features are cool and can be implemented as
time permits

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec6.15

Page 4

Software Engineering Layers

+ Process: framework of the required tasks

— e.g., waterfall, extreme programming
+ Methods: technical “how to”

—e.g., design review, code review, testing, etc.
+ Tools: automate processes and methods

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec6.14

Administrivia
* Piazza

— Use Piazza instead of emailing TA’s

— Avoid asking private questions (we get the same questions over
and over)

— We will work on faster response time for answers

+ Project One

— Mac OS X Lion temporary workarounds: Use instructional
machines or supported OS in a VM to cross-compile

— Testing: Create a plan for automated white-/black-box unit
testing and integration testing

— Individual part and group design due Thu 2/9 11:59P
— Most questions should be directed to the TA’s

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.16




2/6/12

5min Break

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec6.17

2/6/12

1. Gather Requirements

Figure out what this thing is
supposed to do

— A raw list of features

— Written down . . .

Usually a good idea to talk
to users, clients, or
customers!

— But note, they don’t always
know what they want

\. H/
Purpose: Make sure we —_—
don’t build the wrong thing

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.19

Page 5

Waterfall Process Phases

| Gather Requirements |

| Implementation |

Integration

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.18

Bunsa)

2. Specification

+ A written description of
what the system does
— In all circumstances
» For all inputs
» In each possible state
— Don’t assume correct
inputs or states!

+ Because it covers all
situations, much more
comprehensive than
requirements

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.20




3. Design

+ The system architecture

+ Decompose system into
modules

- Specify interfaces
between modules

* Much more of how the
system works, rather than
what it does

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.21

4. Implementation

+ Code up the design

+ First, make a plan

— The order in which things
will be done

— Usually by priority
— Also for testability

» Test each module

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.23

Page 6

3. Design

+ The system architecture

+ Decompose system in
modules

+ Specify interfaces

between modules

« Much more of how the '
system works, rather than
what it does

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.22

5. Integration

+ Put the pieces together

+ A major QA effort at this
point to test the entire
system

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.24




5. Integration

+ Put the pieces together

+ A major QA effort at this
point to test the entire
system

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.25

A Software Process

» This is called the waterfall model
— One of the standard models for developing software

» Each stage leads on to the next
— No iteration or feedback between stages

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.27

Page 7

6. Product

+ Ship/Deploy and be happy!

+ Actually, start maintenance...

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.26

The Waterfall Model

Gather Requirements

Specification

| Implementation

Integration

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.28




The Waterfall Model (Cont’d)

+ There is testing after each phase
— Verify the requirements, the spec, the design
— Not just the coding and the integration

* Note the top-down design
— Requirements, spec, design

+ Bottom-up implementation
— Implement, integrate, product

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.29

The Waterfall Model (Discussion)

* What are the risks with the waterfall model?

» The major risks are (my opinions):

— Relies heavily on being able to accurately assess
requirements at the start

— Little feedback from users until very late
» Unless they understand specification documents

— Problems in the specification may be found very late
» Coding or integration

— Whole process can take a long time before the first working
version is seen

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.30

My Opinions

+ The waterfall model seems to be adopted from other
fields of engineering

— This is how to build bridges

+ Not much software is truly built using the waterfall
process
— Where is it most, least applicable?

+ But many good aspects
— Emphasis on spec, design, testing
— Emphasis on communication through documents

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.31

2/6/12

An Opinion on Time

+ Time is the enemy of all software projects

+ Taking a long time is inherently risky

“I't is hard to make predictions,
especially about the future”

- Yogi Berra

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.32




2/6/12

Why?

The world changes, sometimes quickly

Technologies become obsolete
— Many products obsolete before they first ship!

Other people produce competitive software

Software usually depends on many 3 -party pieces
— Compilers, networking libraries, operating systems, etc.
— All of these are in constant motion

— Moving slowly means spending lots of energy keeping up with
these changes

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.33

2/6/12

Case Study #2

FBI Virtual Case File system (2000-2003)

— Trilogy project: thought to take 3 years and $380 million
(including PC and networking upgrades)

Replace FBI’s Automated Case Support (ACS) software

— Developed in-house by the bureau, considered obsolete
when deployed in 1995...

In 2002, Congress granted Trilogy another $123 million

— In 2004, contractor requests another $50m, FBI pays
contractor $16m to salvage system and another $2m to
perform external review

In 2005, FBI scraps project
— Continues to use “obsolete” ACS...

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.35

Page 9

Case Study #1

+ California DMV software (1987-1993)

+ Attempt to merge driver & vehicle registration systems
— Thought to take 6 years and $8 million

+ Spent 7 years and $50 million before pulling the plug

— Costs 6.5x initial estimate and expected delivery slipped to
1998 (or 11 years)!

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.34

The Flip Side: Advantages to Being Fast

* In the short-term, we can assume the world will not
change

— At least not much

+ Being fast greatly simplifies planning
— Near-term predictions are much more reliable

+ Unfortunately, the waterfall model does not lend itself
to speed...

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.36




Something Faster: Rapid Prototyping

+ Write a quick prototype

+ Show it to users
— Use to refine requirements

+ Then proceed as in waterfall model

— Throw away the prototype
— Do spec, design, coding, integration, etc.

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.37

Comments on Rapid Prototyping

+ Hard to throw away the prototype
— Slogan “the prototype is the product”
— Happens more often than you might think!
— Best way to avoid: write prototype in another language

+ But prototyping is so useful

— Much more realistic to show users a system rather than
specification documents

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.39

Page 10

Fundamental Assumption

+ We do not know much about the final product
— No matter what we think
— Environment will change
— Requirements will change
— Tools will change
— Design will change
— Better to roll with the punches than go for the KO
» (A terrible analogy)

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.38

More Comments

+ A prototype exposes design mistakes

- "Man, this is a pain in the butt to code up, even in the
prototype”

+ Easy to do with web technologies
— Scripting languages are flexible
— Browsers are forgiving
— Much of the glue (CGl, etc.) is already there
— Ruby on Rails makes everything easy
» Even using a DBMS

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.40




2/6/12

Opinions on Reality

Neither of these models is true to life

In reality, feedback between all stages
— Specifications will demand refined requirements
— Design can affect the specification
— Coding problems can affect the design
— Final product may lead to changes in requirements
» |.e., the initial requirements were incorrect!

Waterfall model with “feedback loops”
— lterative model

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.41

2/6/12

Iterative Models: Plan for Change

Use the same stages as the waterfall model

But plan to iterate the whole cycle several times
— Each cycle is a “build”
— Smaller, lighter-weight than entire product

Break the project into a series of builds which lead
from a skeletal prototype to a finished product

This is the model we use in Berkeley research projects!

— Also used by Microsoft (internally), Google, Facebook,
Twitter, and many others

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.43

Page 11

What to Do?

+ Accept that later stages may force changes in earlier

decisions

And plan for it!

The key: Minimize the risk
— Recognize which decisions may need to be revised
— Plan to get confirmation/refutation as soon as possible

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.42
Gather Requirements
+ Same idea as before
» Talk to users, find out what
is needed
+ But recognize diminishing
returns . .
» Without something to show, . /
probably cant get full .
picture of requirements on _
the first iteration
2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.44




Specification

+ A written description of what
the system does
— In all circumstances
» For all inputs
» In each possible state

— Don’t assume correct inputs
or states!

« Still need this
— Worth significant time

+ Recognize it will evolve
— Be aware of what aspects are
under-specified
2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.45

Design

+ Decompose system into
modules and specify
interfaces

+ Design for change

+ Which parts are most
likely to change?
— Put abstraction there .
2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.47

Page 12

Design

+ Decompose system into
modules and specify
interfaces

+ Design for change

+ Which parts are most
likely to change?
— Put abstraction there

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.46

Design

« Plan incremental
development of each
module

+ From skeletal component
to full functionality

» From most critical to least
critical features
— Example: Two engineers
at Facebook implemented
photo sharing with just one
feature — tagging

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.48




Implementation: Build 1
+ Get a skeletal system working

+ All the pieces are there, but
none of them do very much

+ But the interfaces are
implemented

+ This allows
— A complete system to be built

— Development of individual
components to rely on all
interfaces of other components

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.49

Integration

+ Integration and major test
for each build

+ Stabilization point

« Continues until “last” build

— But may begin shipping or
deploying earlier builds

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.51

Page 13

Implementation: Subsequent Builds

+ After build 1, always have a
demo to show (or product
to deploy)

— To customers
— To the team
— Communication!

+ Each build adds more
functionality

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.50

Advantages

* Find problems sooner
— Get early feedback from users
— Get early feedback on whether spec/design are feasible

» More quantifiable than waterfall
— When build 3 of 4 is done, product is 75% complete

— What percentage have we completed at the
implementation stage of the waterfall model?

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.52




Disadvantages

+ Main risk is making a major mistake in requirements,
spec, or design

— Because we don’t invest as much time before build 1
— Begin coding before problem is fully understood

+ Trade this off against the risks of being slow

— Often better to get something working and get feedback
on that rather than study problem in the abstract

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.53

Conclusions

+ Important to follow a good process

« Waterfall
— Top-down design, bottom-up implementation
— Lots of upfront thinking, but slow, hard to iterate

+ lterative, or evolutionary processes

— Build a prototype quickly (and ship/deploy it), then evolve
it over time

— Postpone some of the thinking

2/6/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.55

Page 14

2/6/12

In Practice

+ Most consumer software development uses the
iterative model

— Daily builds
— System is always working
— Always getting feedback

— Microsoft, Google, Facebook, Twitter are well-known
examples

» Many systems that are hard to test use something
more like a waterfall model

— E.g., unmanned space probes

Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 6.54




