
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 4  
 

Synchronization, Atomic operations,
Locks"

January 30, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 4.2!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Space Shuttle Example"
•  Original Space Shuttle launch aborted 20 minutes before

scheduled launch!
•  Shuttle has five computers:!

– Four run the “Primary Avionics  
Software System” (PASS)!

»  Asynchronous and real-time!
» Runs all of the control systems!
» Results synchronized and compared 440 times per second!

– The Fifth computer is the “Backup Flight System” (BFS)!
»  Stays synchronized in case it is needed!
» Written by completely different team than PASS!

•  Countdown aborted because BFS disagreed with PASS!
– A 1/67 chance that PASS was out of sync one cycle!
– Bug due to modifications in initialization code of PASS!

»  A delayed init request placed into timer queue!
»  As a result, timer queue not empty at expected time to force use

of hardware clock!
– Bug not found during extensive simulation!

PASS

BFS

Lec 4.3!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Concurrency"
•  Multiple computations (threads) executing in parallel to !

– share resources, and/or!
– share data!

•  Share resources: high utilization!

•  Share data: enable cooperation between apps, e.g.,!
– Browser sharing data with OS to send/receive packets!
– Web server: thread master sharing work & results with thread

pool (see previous lecture)!
– Powerpoint sharing data with Excel and Word!

Lec 4.4!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Challenges"
•  Applications/programmers would like a system to behave as

they were the only one using it (e.g., VM abstraction)!

•  Performance isolation and predictability"

•  Outputs should be consistent with application semantics!
– E.g., depositing $100 and then another $100 to your bank

account should always increase your balance by $200!

Page 2

Lec 4.5!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Sharing Granularity"
•  Fine grain sharing: !
⇑  increase concurrency à better performance!
⇓  more complex!

•  Coarse grain sharing:!
⇑  Simpler to implement!
⇓  Lower performance!

•  Examples:!
•  Sharing CPU for 10ms vs. 1min!
•  Sharing a database at the row vs. table granularity!

•  A single query can access a row/table at a time!
•  Allow one person vs. multiple persons in a supermarket!!
!

Lec 4.6!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Goals for Today"

•  Synchronization!

•  Hardware Support for Synchronization!
!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne "
Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated by Kubiatowicz."

Lec 4.7!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Motivation: “Too much milk”"
•  Great thing about OSʼs – analogy between

problems in OS and problems in real life!
– Help you understand real life problems better!
– But, computers are much stupider than people!

•  Example: People need to coordinate:!

Arrive home, put milk away"3:30"
Buy milk"3:25"
Arrive at store"Arrive home, put milk away"3:20"
Leave for store"Buy milk"3:15"

Leave for store"3:05"
Look in Fridge. Out of milk"3:00"

Look in Fridge. Out of milk"Arrive at store"3:10"

Person B"Person A"Time"

Lec 4.8!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Definitions"
•  Synchronization: using atomic operations to ensure

cooperation between threads!
– For now, only loads and stores are atomic!
– Weʼll show that is hard to build anything useful with only

reads and writes!

•  Mutual Exclusion: ensuring that only one thread does a
particular thing at a time!

– One thread excludes the other while doing its task!

•  Critical Section: piece of code that only one thread can
execute at once!

– Critical section and mutual exclusion are two ways of
describing the same thing!

– Critical section defines sharing granularity !

Page 3

Lec 4.9!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

More Definitions"
•  Lock: prevents someone from doing something!

– Lock before entering critical section and  
before accessing shared data!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
•  Example: fix the milk problem by putting a lock on refrigerator!

– Lock it and take key if you are going to go buy milk!
– Fixes too much (coarse granularity): roommate angry if only

wants orange juice!

!
– Of Course – We donʼt know how to make a lock yet!

#$@%@#$@

Lec 4.10!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Too Much Milk: Correctness Properties"
•  Need to be careful about correctness of concurrent

programs, since non-deterministic!
– Always write down desired behavior first!
–  Impulse is to start coding first, then when it doesnʼt work,

pull hair out!
–  Instead, think first, then code!

•  What are the correctness properties for the “Too much
milk” problem?!

– Never more than one person buys!
– Someone buys if needed!

•  Restrict ourselves to use only atomic load and store
operations as building blocks!

Lec 4.11!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Too Much Milk: Solution #1"
•  Use a note to avoid buying too much milk:!

– Leave a note before buying (kind of “lock”)!
– Remove note after buying (kind of “unlock”)!
– Donʼt buy if note (wait)!

•  Suppose a computer tries this (remember, only memory read/
write are atomic):!

 if (noMilk) {
 if (noNote) {
 leave Note;
 buy milk;
 remove note;
 }
 }

•  Result? !

Lec 4.12!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Too Much Milk: Solution #1"
•  Still too much milk but only occasionally!!
 Thread A Thread B
 if (noMilk)
 if (noNote) {
 if (noMilk)
 if (noNote) {
 leave Note;

 buy milk;
 remove note;
 }
 }!
 leave Note;

 buy milk;
 …
•  Thread can get context switched after checking milk and note

but before buying milk!!
•  Solution makes problem worse since fails intermittently!

– Makes it really hard to debug…!
– Must work despite what the thread dispatcher does!!

Page 4

Lec 4.13!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Too Much Milk: Solution #1½ "
•  Clearly the Note is not quite blocking enough!

– Letʼs try to fix this by placing note first!
•  Another try at previous solution:!
!

 leave Note;
 if (noMilk) {
 if (noNote) {
 buy milk;
 }
 }

 remove note;

•  What happens here?!
– Well, with human, probably nothing bad!
– With computer: no one ever buys milk!

Lec 4.14!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Too Much Milk Solution #2"
•  How about labeled notes? !

– Now we can leave note before checking!

•  Algorithm looks like this:!
!!
! !Thread A ! !Thread B!
 leave note A; leave note B;

 if (noNote B) { if (noNote A) {
 if (noMilk) { if (noMilk) {
 buy Milk; buy Milk;
 } }
 } }
 remove note A; remove note B;

•  Does this work?!

Lec 4.15!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Too Much Milk Solution #2"
•  Possible for neither thread to buy milk!!
! ! !Thread A ! !Thread B!
 leave note A;
 leave note B;

 if (noNote A) {
 if (noMilk) {
 buy Milk;
 }
 }

 if (noNote B) {
 if (noMilk) {
 buy Milk;
 …
 remove note B;!
•  Really insidious: !

– Unlikely that this would happen, but will at worse possible
time!

Lec 4.16!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Too Much Milk Solution #2:
problem!"

•  Iʼm not getting milk, Youʼre getting milk!
•  This kind of lockup is called “starvation!”!

Page 5

Lec 4.17!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Too Much Milk Solution #3"
•  Here is a possible two-note solution:!
! ! !Thread A ! !Thread B!
 leave note A; leave note B;

 while (note B) {\\X if (noNote A) {\\Y
 do nothing; if (noMilk) {
 } buy milk;
 if (noMilk) { }
 buy milk; }
 } remove note B;
 remove note A;!

•  Does this work? Yes. Both can guarantee that: !
–  It is safe to buy, or!
– Other will buy, ok to quit!

•  At X: !
–  if no note B, safe for A to buy, !
– otherwise wait to find out what will happen!

•  At Y: !
–  if no note A, safe for B to buy!
– Otherwise, A is either buying or waiting for B to quit!

Lec 4.18!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Solution #3 discussion"
•  Our solution protects a single “Critical-Section” piece of code

for each thread:!
 if (noMilk) {
 buy milk;

 } !
•  Solution #3 works, but itʼs really unsatisfactory!

– Really complex – even for this simple an example!
» Hard to convince yourself that this really works!

– Aʼs code is different from Bʼs – what if lots of threads?!
» Code would have to be slightly different for each thread!

– While A is waiting, it is consuming CPU time!
»  This is called “busy-waiting”!

•  Thereʼs a better way!
– Have hardware provide better (higher-level) primitives than

atomic load and store!
– Build even higher-level programming abstractions on this new

hardware support!

Lec 4.19!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

Lec 4.20!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

High-Level Picture"
•  The abstraction of threads is good:!

– Maintains sequential execution model !
– Allows simple parallelism to overlap I/O and computation!

•  Unfortunately, still too complicated to access state shared
between threads !

– Consider “too much milk” example!
–  Implementing a concurrent program with only loads and stores

would be tricky and error-prone!
•  Weʼll implement higher-level operations on top of atomic

operations provided by hardware!
– Develop a “synchronization toolbox”!
– Explore some common programming paradigms!

Page 6

Lec 4.21!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Too Much Milk: Solution #4"
•  Suppose we have some sort of implementation of a lock

(more in a moment). !
– Lock.Acquire() – wait until lock is free, then grab!
– Lock.Release() – unlock, waking up anyone waiting!
– These must be atomic operations – if two threads are waiting

for the lock, only one succeeds to grab the lock!

•  Then, our milk problem is easy:!
! milklock.Acquire();
 if (nomilk)
 buy milk;
 milklock.Release();

•  Once again, section of code between Acquire() and
Release() called a “Critical Section”!

Lec 4.22!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How to Implement Lock?"
•  Lock: prevents someone from accessing something!

– Lock before entering critical section (e.g., before accessing
shared data)!

– Unlock when leaving, after accessing shared data!
– Wait if locked!

»  Important idea: all synchronization involves waiting!
»  Should sleep if waiting for long time!

•  Hardware lock instructions!
–  Is this a good idea?!
– What about putting a task to sleep?!

» How do handle interface between hardware and scheduler?!
– Complexity?!

»  Each feature makes hardware more complex and slower!

Lec 4.23!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  How can we build multi-instruction atomic operations?!
– Recall: dispatcher gets control in two ways. !

»  Internal: Thread does something to relinquish the CPU!
»  External: Interrupts cause dispatcher to take CPU!

– On a uniprocessor, can avoid context-switching by:!
»  Avoiding internal events (although virtual memory tricky)!
»  Preventing external events by disabling interrupts!

•  Consequently, naïve Implementation of locks:!
! !LockAcquire { disable Ints; }
 LockRelease { enable Ints; }!

Naïve use of Interrupt Enable/Disable"

Lec 4.24!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  Canʼt let user do this! Consider following:!
 LockAcquire();
While(TRUE) {;}

•  Real-Time system—no guarantees on timing! !
– Critical Sections might be arbitrarily long!

•  What happens with I/O or other important events? !!
–  “Reactor about to meltdown. Help?”!

Naïve use of Interrupt Enable/Disable:
Problems"

Page 7

Lec 4.25!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Better Implementation of Locks by Disabling
Interrupts"

•  Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable!

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;

}

Lec 4.26!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

New Lock Implementation: Discussion"
•  Disable interrupts: avoid interrupting between checking and

setting lock value!
– Otherwise two threads could think that they both have lock!

!
•  Note: unlike previous solution, critical section very short!

– User of lock can take as long as they like in their own critical
section!

– Critical interrupts taken in time!

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Critical
Section

Lec 4.27!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Interrupt re-enable in going to sleep"
•  What about re-enabling ints when going to sleep?!

•  Before putting thread on the wait queue?!
– Release can check the queue and not wake up thread!

•  After putting the thread on the wait queue!
– Release puts the thread on the ready queue, but the thread still

thinks it needs to go to sleep!
– Misses wakeup and still holds lock (deadlock!)!

•  Want to put it after sleep(). But, how?!

Acquire() {  
"disable interrupts; 
"if (value == BUSY) {  
" "put thread on wait queue; 
" "go to sleep(); 
"} else {  
" "value = BUSY; 
"}  
"enable interrupts; 

}"

Enable Position"
Enable Position"
Enable Position"

Lec 4.28!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

How to Re-enable After Sleep()?"
•  Since ints are disabled when you call sleep:!

– Responsibility of the next thread to re-enable ints!
– When the sleeping thread wakes up, returns to acquire and re-

enables interrupts!
 Thread A !Thread B!
 .

 .
 disable ints

 sleep
 sleep return

 enable ints
 .

 .
 .

 disable int
 sleep

 sleep return
 enable ints

 .
 .

context switch"

context 
switch"

Page 8

Lec 4.29!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Atomic Read-Modify-Write
instructions"

•  Problems with previous solution:!
– Canʼt give lock implementation to users!
– Doesnʼt work well on multiprocessor!

» Disabling interrupts on all processors requires messages and
would be very time consuming!

•  Alternative: atomic instruction sequences!
– These instructions read a value from memory and write a new

value atomically!
– Hardware is responsible for implementing this correctly !

»  on both uniprocessors (not too hard) !
»  and multiprocessors (requires help from cache coherence

protocol)!
– Unlike disabling interrupts, can be used on both

uniprocessors and multiprocessors!

Lec 4.30!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Examples of Read-Modify-Write "

•  test&set (&address) { /* most architectures */
 result = M[address];
 M[address] = 1;
 return result;

}

•  swap (&address, register) { /* x86 */

 temp = M[address];
 M[address] = register;
 register = temp;

}

•  compare&swap (&address, reg1, reg2) { /* 68000 */
 if (reg1 == M[address]) {
 M[address] = reg2;
 return success;
 } else {
 return failure;
 }

}

Lec 4.31!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Implementing Locks with test&set"

•  Simple solution:!
! !int value = 0; // Free
 Acquire() {

 while (test&set(value)); // while busy
 }

 Release() {
 value = 0;
 }

•  Simple explanation:!
–  If lock is free, test&set reads 0 and sets value=1, so lock is now

busy. It returns 0 so while exits!
–  If lock is busy, test&set reads 1 and sets value=1 (no change). It

returns 1, so while loop continues!
– When we set value = 0, someone else can get lock!

!

test&set (&address) {
 result = M[address];
 M[address] = 1;
 return result;
}
!

Lec 4.32!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Problem: Busy-Waiting for Lock"
•  Positives for this solution!

– Machine can receive interrupts!
– User code can use this lock!
– Works on a multiprocessor!

•  Negatives!
–  Inefficient: busy-waiting thread will consume cycles waiting!
– Waiting thread may take cycles away from thread holding lock! !
– Priority Inversion: If busy-waiting thread has higher priority

than thread holding lock ⇒ no progress!!
•  Priority Inversion problem with original Martian rover !
•  For semaphores and monitors (see next lecture), waiting

thread may wait for an arbitrary length of time!!
– Even if OK for locks, definitely not ok for other primitives!
– Homework/exam solutions should not have busy-waiting!!

Page 9

Lec 4.33!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Better Locks using test&set"
•  Can we build test&set locks without busy-waiting?!

– Canʼt entirely, but can minimize!!
–  Idea: only busy-wait to atomically check lock value!

•  Note: sleep has to be sure to reset the guard variable!
– Why canʼt we do it just before or just after the sleep?!

Release() {
 // Short busy-wait time
 while (test&set(guard));
 if anyone on wait queue {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
 // Short busy-wait time
 while (test&set(guard));
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;
 } else {
 value = BUSY;
 guard = 0;
 }

}

Lec 4.34!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Locks using test&set vs. Interrupts"
•  Compare to “disable interrupt” solution!

•  Basically replace !
– disable interrupts à while (test&set(guard));
– enable interrupts à guard = 0;"

int value = FREE;

Acquire() {
 disable interrupts;
 if (value == BUSY) {
 put thread on wait queue;
 Go to sleep();
 // Enable interrupts?
 } else {
 value = BUSY;
 }
 enable interrupts;

}

Release() {
 disable interrupts;
 if (anyone on wait queue) {
 take thread off wait queue
 Place on ready queue;
 } else {
 value = FREE;
 }
 enable interrupts;

}

Lec 4.35!1/30/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"
•  Important concept: Atomic Operations!

– An operation that runs to completion or not at all!
– These are the primitives on which to construct various

synchronization primitives!

•  Talked about hardware atomicity primitives:!
– Disabling of Interrupts, test&set!

•  Showed several constructions of Locks!
– Must be very careful not to waste/tie up machine resources!

»  Shouldnʼt disable interrupts for long!
»  Shouldnʼt spin wait for long!

– Key idea: Separate lock variable, use hardware mechanisms to
protect modifications of that variable!

