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Review: Execution Stack Example

. A: tmp=1
addrX:| A(int tmp) { Stack R ret=’;der
) if (tmp<2) Pointer l
B();
addrY:| printf(tmp); Stack Growth
}
B(){
C();
addrU:| }
.| ot _
AQ); + Stack holds function arguments,
’ return address
V: . . .
ad(.’r :(1) « Permits recursive execution
; i + Crucial to modern languages
addrz: |_exit;
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Review: Execution Stack Example

A(int tmp) {
if (tmp<2)
B();
printf(tmp);
}
B(){
CO;
}
CO{ .
+ Stack holds function arguments,
A(2);
return address
;(1) » Permits recursive execution
" ’ + Crucial to modern languages
exit;
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Review: Execution Stack Example

. A: tmp=1
A(int tmp) { Stack | ret=addrz
if (tmp<2) Pointer 1
B(); h
printf(tmp); Stack Growt
}
B(){
C();
}
CcO{ .
+ Stack holds function arguments,
A(2);
return address
:(1) « Permits recursive execution
_t’ + Crucial to modern languages
exit;
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Review: Execution Stack Example

X A: tmp=1
addrX:| A(int tmp) { ret=addrZ
’ if (tmp<2
if (tmp<2) B: ret=addrY
B(); Stack —)
addrY:| printf(tmp); Pointer l
} Stack Growth
B(){
CO;
addrU: | }
cO{ .
+ Stack holds function arguments,
A(2);
return address
ddrV: . . .
ader :(1) - Permits recursive execution
) 7 + Crucial to modern languages
addrZ: |_exit;
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Review: Execution Stack Example
. A: tmp=1
addrX: | A(int tmp) { etanddrZ
) if 2
if (tmp<2) B: ret=addrY
B();
addrY:| printf(tmp); C: ret=addrU
} A: tmp=2
B0 { Stack _| ret=addrV
Pointer
C0; l
addrU: | } Stack Growth
.| ot .
+ Stack holds function arguments,
A(2);
return address
ddrV: . . .
ader :(1) - Permits recursive execution
) 7 + Crucial to modern languages
addrz: |_exit;
1/25/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 3.7

Page 2

Review: Execution Stack Example

. A: tmp=1
addrX:| A(int tmp) { ret=addrz
’ if (tmp<2
if (tmp<2) B: ret=addrY
B();
ddrY: intf(t ; C: ret=addrU
addr printf(tmp) Stack R
} Pointer l
B0« Stack Growth
C();
addrU:| }
CO{ .
AQ): + Stack holds function arguments,
’ return address
ddrV: . . .
@ .r ' + Permits recursive execution
. A(1); .
) + Crucial to modern languages
addrz: |_exit;
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Review: Execution Stack Example
. A: tmp=1
addrX:| A(int tmp) { ret=addrz
’ if 2
if (tmp<2) B: ret=addrY
B();
addrY:| printf(tmp); C: ret=addrU
} A: tmp=2
B { Stack | ret=addrV
Pointer
C(); 1
addrU: | } Stack Growth
Co{ Output:
A(2);
addrV: | }
o A
addrz: [_exit;
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Review: Execution Stack Example

X A: tmp=1
addrX:| A(int tmp) { ret=addrZ
) if (tmp<2
if (tmp<2) B: ret=addrY
B();
addrY:| printf(tmp); C: ret=addrU
} A: tmp=2
B({ Stack | ret=addrV
Pointer
C(); 1
addrU: | } Stack Growth
co¢ Output:
A(2); 2
addrv: | }
o | Ay
addrz: [_exit;
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Review: Execution Stack Example
. A: tmp=1
addrX:| A(int tmp) { ret=';der
’ if 2
if (tmp<2) B: ret=addrY
B(); Stack >
addrY:| printf(tmp); Pointer l
} Stack Growth
B(){
C();
addrU: | }
Co{ Output:
A(2); 2
addrv: | }
o | Ay
addrz: [_exit;
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Review: Execution Stack Example

. A: tmp=1
addrX:| A(int tmp) { ret=I;der
’ if (tmp<2
if (tmp<2) B: ret=addrY
B();
. i . C: ret=addrU
addrY:| printf(tmp); Stack R
} Pointer l
B(){ Stack Growth
C();
addrU: | }
C0O{ Output:
A(2); 2
addrV: | }
) A(1);
addrz: [_exit;
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Review: Execution Stack Example
. A: tmp=1
addrX:| A(int tmp) { Stack ret=addrz
if (tmp<2) Pointer l
BO; Stack Growth
addrY:| printf(tmp);
}
B(){
C();
addrU: | }
CO{ Output:
A(2); 2
addrVv: | } 1
) A(1);
addrz: [_exit;
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Review: Execution Stack Example

addrX:| A(int tmp) {
’ if (tmp<2)
B();
printf(tmp);
}
B(){
C();

addrY:

addrU: | }

cot Output:
A(2); 2

} 1

. A(1);

addrz: | exit; |
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Single-Threaded Example

+ Imagine the following C program:

main () {
ComputePI (“pi.txt”);
PrintClassList (“clist.text”);

+ What is the behavior here?
— Program would never print out class list
— Why? ComputePl would never finish
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Goals for Today

» Thread Dispatching

» Cooperating Threads

« Concurrency examples
» Need for synchronization

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz.
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Use of Threads
* Version of program with Threads:

main () {
CreateThread (ComputePI (“pi.txt”));
CreateThread (PrintClassList (“clist.text”));

+ What does “CreateThread” do?
— Start independent thread running given procedure
+ What is the behavior here?
— Now, you would actually see the class list
— This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

Time —
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Memory Footprint of Two-Thread
Example

+ If we stopped this program and examined it with a
debugger, we would see

— Two sets of CPU registers Stack 1
— Two sets of Stacks 1
* Questions: Stack 2 §
— How do we position stacks relative to 1 2
each other? 3
— What maximum size should we choose 4 §
for the stacks? Heap o
— What happens if threads violate this?
— How might you catch violations? el i
Code
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Per Thread State

+ Each Thread has a Thread Control Block (TCB)

— Execution State: CPU registers, program counter, pointer to
stack

— Scheduling info: State, priority, CPU time
— Various Pointers (for implementing scheduling queues)
— Pointer to enclosing process? (PCB)?
— Etc (add stuff as you find a need)

+ OS Keeps track of TCBs in protected memory
—In Array, or Linked List, or ...

1/25/12
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Lifecycle of a Thread (or Process)

admitted

interrupt terminated

scheduler dispatch

1/O or event completion 1/0 or event wait

waiting

» As athread executes, it changes state:
—new: The thread is being created
—ready: The thread is waiting to run
—running: Instructions are being executed
— waiting: Thread waiting for some event to occur
—terminated: The thread has finished execution

« “Active” threads are represented by their TCBs
— TCBs organized into queues based on their state
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Ready Queue And Various I/O Device Queues

+ Thread not running = TCB is in some scheduler queue
— Separate queue for each device/signal/condition
— Each queue can have a different scheduler policy

Ready
Queuse

Tape
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

1/25/12

Head Link — Link Link —
Tail Registers Registers Registers =
Other Other Other
Head [ State State State
- = TCBg TCBg TCB;s
Tail /L
Head Link Link 1
Tail Registers Registers| =
Other Other
Head | L State State
- = TCB, TCB,
Tail /L
z Link —
Head 7 R:gisters =
Tail Other
State
TCBg
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Dispatch Loop

+ Conceptually, the dispatching loop of the operating system looks
as follows:

Loop {
RunThread() ;
ChooseNextThread () ;
SaveStateOfCPU (curTCB) ;
LoadStateOfCPU (newTCB) ;
}

+ This is an infinite loop
— One could argue that this is all that the OS does
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Review: Yielding through Internal
Events
+ Blocking on I/0
— The act of requesting I/0 implicitly yields the CPU
+ Waiting on a “signal” from other thread
— Thread asks to wait and thus yields the CPU
« Thread executes a yield ()
— Thread volunteers to give up CPU
computePI () {
while (TRUE) {
ComputeNextDigit () ;
yield();

}
— Note that yield () must be called by programmer frequently
enough!
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Running a thread

Consider first portion: RunThread ()

* How do | run a thread?
— Load its state (registers, PC, stack pointer) into CPU
— Load environment (virtual memory space, etc)
—Jump to the PC

+ How does the dispatcher get control back?

— Internal events: thread returns control voluntarily
— External events: thread gets preempted
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Review: Stack for Yielding Thread

ComputePI

yield
Trap to OS C

ymoub yoerg

» How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* deallocates finished threads */

}
+ Finished thread not killed right away. Why?
— Move them in “exit/terminated” state
— ThreadHouseKeeping() deallocates finished threads
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Review: Stack for Yielding Thread

ComputePl

yield
Trap to OS C

ymoub yoerg

» How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* deallocates finished threads */

}
+ How does dispatcher switch to a new thread?
— Save anything next thread may trash: PC, regs, stack

— Maintain isolation for each thread
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Detour: Interrupt Controller

t =L

» 2| 2
=" HE
£l
-5_ <
T
5|3
218
“le
v Software Control
NMI
Network Interrupt

+ Interrupts invoked with interrupt lines from devices
+ Interrupt controller chooses interrupt request to honor
— Mask enables/disables interrupts
— Priority encoder picks highest enabled interrupt
— Software Interrupt Set/Cleared by Software
— Interrupt identity specified with ID line
+ CPU can disable all interrupts with internal flag

+ Non-maskable interrupt line (NMI) can'’t be disabled
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Review: Two Thread Yield Example

+ Consider the following

code blocks:
proc A() { Thread S Thread T
B(O)s A A
£
} 3| | B(while) B(while)
(o]
proc B() { 35| |yield yield
while (TRUE) { g
yield();

}

+ Suppose we have 2
threads:

—Threads Sand T
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Review: Preemptive Multithreading
+ Use the timer interrupt to force scheduling decisions

Interrupt

+ Timer Interrupt routine:
TimerInterrupt () {
DoPeriodicHouseKeeping () ;
run_new_thread() ;

6 oels

yimol

+ This is often called preemptive multithreading, since threads
are preempted for better scheduling

— Solves problem of user who doesn't insert yield();
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Announcements

+ We are using Piazza instead of the newsgroup

— Got to http://www.piazza.com/berkeley/spring2012/cs162

— Make an account and join Berkeley, CS 162

— Please ask questions on Piazza instead of emailing TAs

+ Section assignments posted on Piazza
— Attend new sections THIS week

+ Suggestions for in-class question technology?
— Email cs162@cory

Question for the break:

— Propose best practices for managing a home computer
(things break, viruses, we live in an earthquake zone, ...)
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Why allow cooperating threads?

+ People cooperate; corg%#éers help/enhance people’s lives, so

computers must coop

— By analogy, the non-reproducibility/non-determinism of people is

4 b

a’notable problem for “carefully laid plans

+ Advantage 1: Share resources
— One computer, many users

— One bank balance, many ATMs
» What if ATMs were only updated at night?

— Embedded systems (robot control: coordinate arm & hand)

+ Advantage 2: Speedup
— Overlap I/0 and computation
— Multiprocessors — chop up program into parallel pieces

+ Advantage 3: Modularity
— Chop large problem up into simpler pieces
» To compile, for instance, gcc calls cpp l cc1lcc2las|Id
» Makes system easier to extend
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5min Break
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Threaded Web Server

= >

+ Multithreaded version: | |
serverLoop () {
connection = AcceptCon();
ThreadCreate (ServiceWebPage (), connection) ;

}
+ Advantages of threaded version:

— Can share file caches kept in memory, results of CGl scripts,
other things

— Threads are much cheaper to create than processes, so this
has a lower per-request overhead

+ What if too many requests come in at once?
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Thread Pools
+ Problem with previous version: Unbounded Threads
— When web-site becomes too popular — throughput sinks

+ Instead, allocate a bounded “pool” of threads, representing
the maximum level of multiprogramming

Thread Pool

master() { slave (queue) {

allocThreads (slave, queue) ; while(ERUE) { .
while (TRUE) { ‘?Z"‘Deqff“e {if"‘e“e) i
con=AcceptCon () ; if (con==null)

Enqueue (queue, con) ; 1 sleepOn (queue) ;
wakeUp (queue) ; eise :
} ServiceWebPage (con) ;
}
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ATM bank server example

+ Suppose we wanted to implement a server process to
handle requests from an ATM network:

BankServer () {
while (TRUE) ({
ReceiveRequest (&op, &acctId, &amount);
ProcessRequest (op, acctId, amount);
}
}
ProcessRequest (op, acctId, amount) {
if (op == deposit) Deposit (acctId, amount);
else if ..

}

Deposit (acctId, amount) {
acct = GetAccount (acctId); /* may use disk I/0O */
acct->balance += amount;
StoreAccount (acct); /* Involves disk I/O */

}
» How could we speed this up?
— More than one request being processed at once
— Event driven (overlap computation and I/O)
— Multiple threads (multi-proc, or overlap comp and 1/0O)

1/25/12 Anthony D. Joseph and lon Stoica CS162 ©UCB Spring 2012 Lec 3.35

Page 9

ATM Bank Server

A

—

I[]
|

oooo
oooo
oooo

oooo
oooo
oooo

|

oooo

oooo
oooo

+ ATM server problem:
— Service a set of requests
— Do so without corrupting database
— Don’t hand out too much money
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Event Driven Version of ATM server

+ Suppose we only had one CPU
— Still like to overlap 1/0 with computation

- Witlhout threads, we would have to rewrite in event-driven
style

+ Example

BankServer () {
while (TRUE) {

event WaitForNextEvent () ;

if (event == ATMRequest)
StartOnRequest () ;

else if (event == AcctAvail)
ContinueRequest () ;

else if (event == AcctStored)
FinishRequest () ;

}
}

— What if we missed a blocking I/O step?

— What if we have to split code into hundreds of pieces which
could be blocking?

— This technique is used for graphical programming
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Can Threads Make This Easier?

+ Threads yield overlapped I/O and computation without
“deconstructing” code into non-blocking fragments
— One thread per request
+ Requests proceeds to completion, blocking as required:
Deposit (acctId, amount) {
acct = GetAccount (actId); /* May use disk I/0 */

acct->balance += amount;
StoreAccount (acct) ;

}
+ Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load rl, acct->balance

/* Involves disk I/0 */

load rl, acct->balance
add rl, amount2
store rl, acct->balance
add rl, amountl
store rl, acct->balance
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Problem is at the lowest level

+ Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y=2;
+ However, What about (Initially, y = 12):
Thread A Thread B
x=1; y=2;
X =y+1; y=y2;
— What are the possible values of x?

Thread A Thread B
y=2;
y=y*2;

x=1;
X=y+1;
(s ]
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Problem is at the lowest level

+ Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y=2;
+ However, What about (Initially, y = 12):
Thread A Thread B
x=1; y=2
X =y+1; y=y'2;
— What are the possible values of x?
Thread A Thread B
X=1;
X =y+1;
y=2;
y=y?2
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Problem is at the lowest level

+ Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y=2;
+ However, What about (Initially, y = 12):
Thread A Thread B
x=1; y=2;
X =y+1; y=y2;
— What are the possible values of x?
Thread A Thread B
y=2;
x=1;
X =Yy+1;
y=y*2;
[ ]
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Atomic Operations Correctness Requirements
» Threaded programs must work for all interleavings of thread

+ To understand a concurrent program, we need to know what instruction sequences
the underlying indivisible operations are! . — Cooperating threads inherently non-deterministic and non-
+ Atomic Operation: an operation that always runs to completion reproducible
or not at all — Really hard to debug unless carefully designed!
— It is indivisible: it cannot be stopped in the middle and state + Example: Therac-25
cannot be modified by someone else in the middle — Machine for radiation therapy -
— Fundamental building block — if no atomic operations, then have » Software control of electron
no way for threads to work together accelerator and electron beam/

Xray production

. . . » Software control of dosage
+ On most machines, memory references and assignments (i.e. — Software errors caused the

loads and stores) of words are atomic death of several patients

» A series of race conditions on
shared variables and poor

oiplay | Moton snable  Beam oot lght st emergency
DEpiaY switch(ootswiton) el swiches.

» Many instructions are not atomic software design T T e e Ty
— Double-precision floating point store often not atomic » “They determined that data entry speed during editing was the

— VAX and IBM 360 had an instruction to copy a whole array \I%'ngg}gd'gf;og‘g‘t"Sgctgﬁﬁgg(/g?é‘gs'gogég]trrr‘:d‘.’,,r escription data
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Another Concurrent Program
Space Shuttle Example Example

+ Original Space Shuttle launch aborted 20 minutes before - Two threads, A and B, compete with each other
scheduled launch ’ ’

+ Shuttle has five computers:

| — One tries to increment a shared counter

— Four run the “Primary Avionics I HoA ﬁ — The other tries to decrement the counter
Software System” (PASS) = Thread A Thread B
» Asynchronous and real-time ﬁr | BFS izo: izo.
» Runs all of the control systems while (i<10) while (i>-10)
» Results synchronized and compared 440 times per second i=i+1; i=i—1;
— The Fifth computer is the “Backup Flight System” (BFS) printf(“A wins!”); printf(“B wins!”);

» Stays synchronized in case it is needed
» Written by completely different team than PASS
+ Countdown aborted because BFS disagreed with PASS ) )
— A 1/67 chance that PASS was out of sync one cycle * Who wins? Could be either
— Bug due to modifications in initialization code of PASS + Is it guaranteed that someone wins? Why or why not?

» A delayed init request placed into timer queue + What it both threads have their own CPU running at same
» As a result, timer queue not empty at expected time to force use

+ Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic

of hardware clock speed? ls it guaranteed that it goes on forever?
— Bug not found during extensive simulation
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Summary

+ Concurrent threads are a very useful abstraction
— Allow transparent overlapping of computation and I/O
— Allow use of parallel processing when available

+ Concurrent threads introduce problems when accessing
shared data
— Programs must be insensitive to arbitrary interleavings

— Without careful design, shared variables can become
completely inconsistent

+ Important concept: Atomic Operations
— An operation that runs to completion or not at all

— These are the primitives on which to construct various
synchronization primitives
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