
Page 1

CS162  
Operating Systems and 
Systems Programming 

Lecture 3  
 

Concurrency and Thread Dispatching "

January 25, 2012!
Anthony D. Joseph and Ion Stoica!

http://inst.eecs.berkeley.edu/~cs162!

Lec 3.2!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

•  Stack holds function arguments,
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.3!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

•  Stack holds function arguments,
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.4!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

•  Stack holds function arguments,
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

 "

Page 2

Lec 3.5!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

•  Stack holds function arguments,
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"

B: ret=addrY"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.6!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

•  Stack holds function arguments,
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.7!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

•  Stack holds function arguments,
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

A: tmp=2"
 ret=addrV"Stack"

Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Lec 3.8!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

A: tmp=2"
 ret=addrV"Stack"

Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"

Page 3

Lec 3.9!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

A: tmp=2"
 ret=addrV"Stack"

Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"

Lec 3.10!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"

B: ret=addrY"

C: ret=addrU"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"

Lec 3.11!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"

B: ret=addrY"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"

Lec 3.12!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

Stack"
Pointer"

Stack Growth"

A: tmp=1"
 ret=addrZ"addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"
1"

Page 4

Lec 3.13!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Execution Stack Example"

A(int tmp) {"
 if (tmp<2)"

 B();"
 printf(tmp);"
}"

B() {"
 C();"

}"
C() {"
 A(2);"

}"
A(1);"

exit;"

addrX:"

addrY:"

addrU:"

addrV:"

addrZ:"

."

."

."
"

."

."

."
"

."

."

."
"

."

."

."

Output:"
2"
1"

Lec 3.14!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Goals for Today"
•  Thread Dispatching!
•  Cooperating Threads!
•  Concurrency examples!
•  Need for synchronization!
!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from lecture notes by Kubiatowicz."

Lec 3.15!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Single-Threaded Example"
•  Imagine the following C program: 
!
 main() {
 ComputePI(“pi.txt”);

 PrintClassList(“clist.text”);
 }

!
•  What is the behavior here?!

– Program would never print out class list!
– Why? ComputePI would never finish!

Lec 3.16!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Use of Threads"
•  Version of program with Threads: 
!
 main() {
 CreateThread(ComputePI(“pi.txt”));
 CreateThread(PrintClassList(“clist.text”));
 }
!
•  What does “CreateThread” do?!

– Start independent thread running given procedure!
•  What is the behavior here?!

– Now, you would actually see the class list!
– This should behave as if there are two separate CPUs!

CPU1" CPU2" CPU1" CPU2"

Time "

CPU1" CPU2"

Page 5

Lec 3.17!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Memory Footprint of Two-Thread
Example"

•  If we stopped this program and examined it with a
debugger, we would see!

– Two sets of CPU registers!
– Two sets of Stacks!

•  Questions: !
– How do we position stacks relative to  

each other?!
– What maximum size should we choose  

for the stacks?!
– What happens if threads violate this?!
– How might you catch violations?!

Code"

Global Data"

Heap"

Stack 1"

Stack 2"

A
ddress Space"

Lec 3.18!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Per Thread State"
•  Each Thread has a Thread Control Block (TCB)!

– Execution State: CPU registers, program counter, pointer to
stack!

– Scheduling info: State, priority, CPU time!
– Various Pointers (for implementing scheduling queues)!
– Pointer to enclosing process? (PCB)?!
– Etc (add stuff as you find a need)!

•  OS Keeps track of TCBs in protected memory!
–  In Array, or Linked List, or …!

Lec 3.19!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Lifecycle of a Thread (or Process)"

•  As a thread executes, it changes state:!
– new: The thread is being created!
–  ready: The thread is waiting to run!
–  running: Instructions are being executed!
– waiting: Thread waiting for some event to occur!
–  terminated: The thread has finished execution!

•  “Active” threads are represented by their TCBs!
– TCBs organized into queues based on their state!

Lec 3.20!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Ready Queue And Various I/O Device Queues"
•  Thread not running ⇒ TCB is in some scheduler queue!

–  Separate queue for each device/signal/condition !
–  Each queue can have a different scheduler policy!

Other
State
TCB9

Link
Registers

Other
State
TCB6

Link
Registers

Other
State
TCB16

Link
Registers

Other
State
TCB8

Link
Registers

Other
State
TCB2

Link
Registers

Other
State
TCB3

Link
Registers

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Head
Tail

Ready
Queue

Tape
Unit 0

Disk
Unit 0

Disk
Unit 2

Ether
Netwk 0

Page 6

Lec 3.21!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Dispatch Loop"
•  Conceptually, the dispatching loop of the operating system looks

as follows: 
!
 Loop {

 RunThread();

 ChooseNextThread();

 SaveStateOfCPU(curTCB);

 LoadStateOfCPU(newTCB);

 }

•  This is an infinite loop!
– One could argue that this is all that the OS does!

Lec 3.22!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Running a thread"
Consider first portion: RunThread()!

•  How do I run a thread?!
– Load its state (registers, PC, stack pointer) into CPU!
– Load environment (virtual memory space, etc)!
– Jump to the PC!

•  How does the dispatcher get control back?!
–  Internal events: thread returns control voluntarily!
– External events: thread gets preempted!
!

Lec 3.23!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Yielding through Internal
Events"

•  Blocking on I/O!
– The act of requesting I/O implicitly yields the CPU!

•  Waiting on a “signal” from other thread!
– Thread asks to wait and thus yields the CPU!

•  Thread executes a yield()
– Thread volunteers to give up CPU!
 computePI() {
 while(TRUE) {
 ComputeNextDigit();
 yield();
 }
 }
– Note that yield() must be called by programmer frequently

enough!!

Lec 3.24!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Stack for Yielding Thread"

•  How do we run a new thread?!
 run_new_thread() {
 newThread = PickNewThread();
 switch(curThread, newThread);
 ThreadHouseKeeping(); /* deallocates finished threads */
 }

•  Finished thread not killed right away. Why?!
– Move them in “exit/terminated” state!
–  ThreadHouseKeeping() deallocates finished threads!

yield"

ComputePI" Stack grow
th"run_new_thread"

kernel_yield"
Trap to OS"

switch"

Page 7

Lec 3.25!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Stack for Yielding Thread"

•  How do we run a new thread?!
 run_new_thread() {
 newThread = PickNewThread();
 switch(curThread, newThread);
 ThreadHouseKeeping(); /* deallocates finished threads */
 }

•  How does dispatcher switch to a new thread?!
– Save anything next thread may trash: PC, regs, stack!
– Maintain isolation for each thread!

yield"

ComputePI" Stack grow
th"run_new_thread"

kernel_yield"
Trap to OS"

switch"

Lec 3.26!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Two Thread Yield Example"
•  Consider the following

code blocks:!
! proc A() {

 B();

 }

 proc B() {

 while(TRUE) {

 yield();

 }
 }

•  Suppose we have 2
threads:!

– Threads S and T!

Thread S"

St
ac

k
gr

ow
th
" A"

B(while)"

yield"

run_new_thread"

switch"

Thread T"

A"

B(while)"

yield"

run_new_thread"

switch"

Lec 3.27!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Detour: Interrupt Controller"

•  Interrupts invoked with interrupt lines from devices!
•  Interrupt controller chooses interrupt request to honor!

– Mask enables/disables interrupts!
–  Priority encoder picks highest enabled interrupt !
–  Software Interrupt Set/Cleared by Software!
–  Interrupt identity specified with ID line!

•  CPU can disable all interrupts with internal flag!
•  Non-maskable interrupt line (NMI) canʼt be disabled!

Network"

IntID"

Interrupt"

Interrupt M
ask"

Control"Software"
Interrupt" NMI"

CPU"

Priority Encoder"

Tim
er"

Int Disable"

Lec 3.28!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Review: Preemptive Multithreading"
•  Use the timer interrupt to force scheduling decisions!

•  Timer Interrupt routine: 
!TimerInterrupt() {
 DoPeriodicHouseKeeping();
 run_new_thread();
 }

•  This is often called preemptive multithreading, since threads
are preempted for better scheduling!

– Solves problem of user who doesnʼt insert yield();!

Some Routine"

run_new_thread"

TimerInterrupt"
Interrupt"

switch"

Stack grow
th"

Page 8

Lec 3.29!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Announcements"
•  We are using Piazza instead of the newsgroup!

– Got to http://www.piazza.com/berkeley/spring2012/cs162!
– Make an account and join Berkeley, CS 162!
– Please ask questions on Piazza instead of emailing TAs!

•  Section assignments posted on Piazza!
– Attend new sections THIS week!

•  Suggestions for in-class question technology?!
– Email cs162@cory!

•  Question for the break:!
– Propose best practices for managing a home computer

(things break, viruses, we live in an earthquake zone, …)!
Lec 3.30!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

5min Break"

Lec 3.31!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Why allow cooperating threads?"
•  People cooperate; computers help/enhance peopleʼs lives, so

computers must cooperate!
– By analogy, the non-reproducibility/non-determinism of people is

a notable problem for “carefully laid plans”!

•  Advantage 1: Share resources!
– One computer, many users!
– One bank balance, many ATMs!

» What if ATMs were only updated at night?!
– Embedded systems (robot control: coordinate arm & hand)!

•  Advantage 2: Speedup!
– Overlap I/O and computation!
– Multiprocessors – chop up program into parallel pieces!

•  Advantage 3: Modularity !
– Chop large problem up into simpler pieces!

»  To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld!
» Makes system easier to extend!

Lec 3.32!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Threaded Web Server"

•  Multithreaded version:!
serverLoop() {
 connection = AcceptCon();
 ThreadCreate(ServiceWebPage(),connection);
 }

•  Advantages of threaded version:!
– Can share file caches kept in memory, results of CGI scripts,

other things!
– Threads are much cheaper to create than processes, so this

has a lower per-request overhead!
•  What if too many requests come in at once?!

Page 9

Lec 3.33!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Thread Pools"
•  Problem with previous version: Unbounded Threads!

– When web-site becomes too popular – throughput sinks!
•  Instead, allocate a bounded “pool” of threads, representing

the maximum level of multiprogramming!

master() {
 allocThreads(slave,queue);
 while(TRUE) {
 con=AcceptCon();
 Enqueue(queue,con);
 wakeUp(queue);
 }
}

slave(queue) {
 while(TRUE) {
 con=Dequeue(queue);
 if (con==null)
 sleepOn(queue);
 else
 ServiceWebPage(con);
 }
}

Master
Thread

Thread Pool

qu
eu

e

Lec 3.34!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

ATM Bank Server"

•  ATM server problem:!
– Service a set of requests!
– Do so without corrupting database!
– Donʼt hand out too much money!

Lec 3.35!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

ATM bank server example"
•  Suppose we wanted to implement a server process to

handle requests from an ATM network:!
!BankServer() {
 while (TRUE) {
 ReceiveRequest(&op, &acctId, &amount);
 ProcessRequest(op, acctId, amount);
 }
}
 ProcessRequest(op, acctId, amount) {
 if (op == deposit) Deposit(acctId, amount);
 else if …
}
 Deposit(acctId, amount) {
 acct = GetAccount(acctId); /* may use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
}

•  How could we speed this up?!
– More than one request being processed at once!
– Event driven (overlap computation and I/O)!
– Multiple threads (multi-proc, or overlap comp and I/O)!

Lec 3.36!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Event Driven Version of ATM server"
•  Suppose we only had one CPU!

– Still like to overlap I/O with computation!
– Without threads, we would have to rewrite in event-driven

style!
•  Example!
! !BankServer() {

 while(TRUE) {
 event = WaitForNextEvent();
 if (event == ATMRequest)
 StartOnRequest();
 else if (event == AcctAvail)
 ContinueRequest();
 else if (event == AcctStored)
 FinishRequest();
 }
 }

– What if we missed a blocking I/O step?!
– What if we have to split code into hundreds of pieces which

could be blocking?!
– This technique is used for graphical programming!

Page 10

Lec 3.37!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Can Threads Make This Easier?"
•  Threads yield overlapped I/O and computation without

“deconstructing” code into non-blocking fragments!
– One thread per request!

•  Requests proceeds to completion, blocking as required:!
 Deposit(acctId, amount) {
 acct = GetAccount(actId); /* May use disk I/O */
 acct->balance += amount;
 StoreAccount(acct); /* Involves disk I/O */
 }!

•  Unfortunately, shared state can get corrupted: 
! !Thread 1 ! !Thread 2  
!!load r1, acct->balance
 load r1, acct->balance
 add r1, amount2
 store r1, acct->balance
 add r1, amount1
 store r1, acct->balance

Lec 3.38!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
! !x = 1; !!
! ! x = y+1; !!

 y = 2;!
 y = y*2!

x=13"

Lec 3.39!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
!! y = 2; !!
!! y = y*2; !!

 x = 1;!
 x = y+1;!

x=5"

Lec 3.40!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! ! x = y+1; ! y = y*2;!

– What are the possible values of x? !
! Thread A !Thread B!
!! y = 2; !!
! ! x = 1; !!

 x = y+1;!
 y= y*2;!

x=3"

Page 11

Lec 3.41!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Atomic Operations"
•  To understand a concurrent program, we need to know what

the underlying indivisible operations are!!
•  Atomic Operation: an operation that always runs to completion

or not at all!
–  It is indivisible: it cannot be stopped in the middle and state

cannot be modified by someone else in the middle!
– Fundamental building block – if no atomic operations, then have

no way for threads to work together!

•  On most machines, memory references and assignments (i.e.
loads and stores) of words are atomic!

•  Many instructions are not atomic!
– Double-precision floating point store often not atomic!
– VAX and IBM 360 had an instruction to copy a whole array!

Lec 3.42!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

•  Threaded programs must work for all interleavings of thread
instruction sequences!

– Cooperating threads inherently non-deterministic and non-
reproducible!

– Really hard to debug unless carefully designed!!
•  Example: Therac-25!

– Machine for radiation therapy!
»  Software control of electron  

accelerator and electron beam/ 
Xray production!

»  Software control of dosage!
– Software errors caused the  

death of several patients!
»  A series of race conditions on  

shared variables and poor  
software design!

»  “They determined that data entry speed during editing was the
key factor in producing the error condition: If the prescription data
was edited at a fast pace, the overdose occurred.”!

Correctness Requirements"

Lec 3.43!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Space Shuttle Example"
•  Original Space Shuttle launch aborted 20 minutes before

scheduled launch!
•  Shuttle has five computers:!

– Four run the “Primary Avionics  
Software System” (PASS)!

»  Asynchronous and real-time!
» Runs all of the control systems!
» Results synchronized and compared 440 times per second!

– The Fifth computer is the “Backup Flight System” (BFS)!
»  Stays synchronized in case it is needed!
» Written by completely different team than PASS!

•  Countdown aborted because BFS disagreed with PASS!
– A 1/67 chance that PASS was out of sync one cycle!
– Bug due to modifications in initialization code of PASS!

»  A delayed init request placed into timer queue!
»  As a result, timer queue not empty at expected time to force use

of hardware clock!
– Bug not found during extensive simulation!

PASS

BFS

Lec 3.44!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Another Concurrent Program
Example"

•  Two threads, A and B, compete with each other!
– One tries to increment a shared counter!
– The other tries to decrement the counter!

! ! !Thread A ! !Thread B!
! !i = 0; ! !i = 0; 

!while (i < 10) !while (i > -10) 
! i = i + 1; ! i = i – 1; 
!printf(“A wins!”); !printf(“B wins!”);!

•  Assume that memory loads and stores are atomic, but
incrementing and decrementing are not atomic !

•  Who wins? Could be either!
•  Is it guaranteed that someone wins? Why or why not?!
•  What it both threads have their own CPU running at same

speed? Is it guaranteed that it goes on forever?!

Page 12

Lec 3.45!1/25/12! Anthony D. Joseph and Ion Stoica CS162 ©UCB Spring 2012!

Summary"
•  Concurrent threads are a very useful abstraction!

– Allow transparent overlapping of computation and I/O!
– Allow use of parallel processing when available!

•  Concurrent threads introduce problems when accessing
shared data!

– Programs must be insensitive to arbitrary interleavings!
– Without careful design, shared variables can become

completely inconsistent!

•  Important concept: Atomic Operations!
– An operation that runs to completion or not at all!
– These are the primitives on which to construct various

synchronization primitives!

