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Review: Execution Stack Example"

•  Stack holds function arguments, 
return address!

•  Permits recursive execution!
•  Crucial to modern languages!

A(int tmp) {"
  if (tmp<2)"

    B();"
  printf(tmp);"
}"

B() {"
  C();"

}"
C() {"
  A(2);"

}"
A(1);"

exit;"
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Goals for Today"
•  Thread Dispatching!
•  Cooperating Threads!
•  Concurrency examples!
•  Need for synchronization!
!

Note: Some slides and/or pictures in the following are"
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from lecture notes by Kubiatowicz."
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Single-Threaded Example"
•  Imagine the following C program: 
!
 main() { 
    ComputePI(“pi.txt”); 

    PrintClassList(“clist.text”); 
 } 

!
•  What is the behavior here?!

– Program would never print out class list!
– Why? ComputePI would never finish!
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Use of Threads"
•  Version of program with Threads: 
!
 main() { 
    CreateThread(ComputePI(“pi.txt”)); 
    CreateThread(PrintClassList(“clist.text”)); 
 } 
!
•  What does “CreateThread” do?!

– Start independent thread running given procedure!
•  What is the behavior here?!

– Now, you would actually see the class list!
– This should behave as if there are two separate CPUs!

CPU1" CPU2" CPU1" CPU2"

Time "

CPU1" CPU2"
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Memory Footprint of Two-Thread 
Example"

•  If we stopped this program and examined it with a 
debugger, we would see!

– Two sets of CPU registers!
– Two sets of Stacks!

•  Questions: !
– How do we position stacks relative to  

each other?!
– What maximum size should we choose  

for the stacks?!
– What happens if threads violate this?!
– How might you catch violations?!

Code"

Global Data"

Heap"

Stack 1"

Stack 2"

A
ddress Space"
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Per Thread State"
•  Each Thread has a Thread Control Block (TCB)!

– Execution State: CPU registers, program counter, pointer to 
stack!

– Scheduling info: State, priority, CPU time!
– Various Pointers (for implementing scheduling queues)!
– Pointer to enclosing process? (PCB)?!
– Etc (add stuff as you find a need)!

•  OS Keeps track of TCBs in protected memory!
–  In Array, or Linked List, or …!
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Lifecycle of a Thread (or Process)"

•  As a thread executes, it changes state:!
– new:  The thread is being created!
–  ready:  The thread is waiting to run!
–  running:  Instructions are being executed!
– waiting:  Thread waiting for some event to occur!
–  terminated:  The thread has finished execution!

•  “Active” threads are represented by their TCBs!
– TCBs organized into queues based on their state!
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Ready Queue And Various I/O Device Queues"
•  Thread not running ⇒ TCB is in some scheduler queue!

–  Separate queue for each device/signal/condition !
–  Each queue can have a different scheduler policy!
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Dispatch Loop"
•  Conceptually, the dispatching loop of the operating system looks 

as follows: 
!
  Loop { 

     RunThread();  

     ChooseNextThread(); 

     SaveStateOfCPU(curTCB); 

     LoadStateOfCPU(newTCB); 

  } 

 

•  This is an infinite loop!
– One could argue that this is all that the OS does!
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Running a thread"
Consider first portion:   RunThread()!

•  How do I run a thread?!
– Load its state (registers, PC, stack pointer) into CPU!
– Load environment (virtual memory space, etc)!
– Jump to the PC!

•  How does the dispatcher get control back?!
–  Internal events: thread returns control voluntarily!
– External events: thread gets preempted!
!
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Review: Yielding through Internal 
Events"

•  Blocking on I/O!
– The act of requesting I/O implicitly yields the CPU!

•  Waiting on a “signal” from other thread!
– Thread asks to wait and thus yields the CPU!

•  Thread executes a yield() 
– Thread volunteers to give up CPU!
  computePI() { 
      while(TRUE) { 
         ComputeNextDigit(); 
         yield(); 
      } 
   } 
– Note that yield() must be called by programmer frequently 

enough!!
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Review: Stack for Yielding Thread"

•  How do we run a new thread?!
  run_new_thread() { 
     newThread = PickNewThread(); 
     switch(curThread, newThread); 
     ThreadHouseKeeping(); /* deallocates finished threads */ 
  } 

•  Finished thread not killed right away. Why?!
– Move them in “exit/terminated” state!
–  ThreadHouseKeeping() deallocates finished threads!

yield"

ComputePI" Stack grow
th"run_new_thread"

kernel_yield"
Trap to OS"

switch"
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Review: Stack for Yielding Thread"

•  How do we run a new thread?!
  run_new_thread() { 
     newThread = PickNewThread(); 
     switch(curThread, newThread); 
     ThreadHouseKeeping(); /* deallocates finished threads */ 
  } 

•  How does dispatcher switch to a new thread?!
– Save anything next thread may trash: PC, regs, stack!
– Maintain isolation for each thread!
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Review: Two Thread Yield Example"
•  Consider the following 

code blocks:!
!     proc A() {   

     B();  
  

  } 

  proc B() { 

     while(TRUE) { 

        yield(); 

     } 
  } 

•  Suppose we have 2 
threads:!

– Threads S and T!

Thread S"

St
ac

k 
gr

ow
th
" A"

B(while)"

yield"

run_new_thread"

switch"

Thread T"

A"

B(while)"

yield"

run_new_thread"

switch"
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Detour: Interrupt Controller"

•  Interrupts invoked with interrupt lines from devices!
•  Interrupt controller chooses interrupt request to honor!

– Mask enables/disables interrupts!
–  Priority encoder picks highest enabled interrupt !
–  Software Interrupt Set/Cleared by Software!
–  Interrupt identity specified with ID line!

•  CPU can disable all interrupts with internal flag!
•  Non-maskable interrupt line (NMI) canʼt be disabled!

Network"

IntID"

Interrupt"

Interrupt M
ask"

Control"Software"
Interrupt" NMI"

CPU"

Priority Encoder"

Tim
er"

Int Disable"
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Review: Preemptive Multithreading"
•  Use the timer interrupt to force scheduling decisions!

•  Timer Interrupt routine: 
!TimerInterrupt() { 
    DoPeriodicHouseKeeping();  
    run_new_thread(); 
 } 

•  This is often called preemptive multithreading, since threads 
are preempted for better scheduling!

– Solves problem of user who doesnʼt insert yield();!

Some Routine"

run_new_thread"

TimerInterrupt"
Interrupt"

switch"

Stack grow
th"
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Announcements"
•  We are using Piazza instead of the newsgroup!

– Got to http://www.piazza.com/berkeley/spring2012/cs162!
– Make an account and join Berkeley, CS 162!
– Please ask questions on Piazza instead of emailing TAs!

•  Section assignments posted on Piazza!
– Attend new sections THIS week!

•  Suggestions for in-class question technology?!
– Email cs162@cory!

•  Question for the break:!
– Propose best practices for managing a home computer 

(things break, viruses, we live in an earthquake zone, …)!
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5min Break"
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Why allow cooperating threads?"
•  People cooperate; computers help/enhance peopleʼs lives, so 

computers must cooperate!
– By analogy, the non-reproducibility/non-determinism of people is 

a notable problem for “carefully laid plans”!

•  Advantage 1: Share resources!
– One computer, many users!
– One bank balance, many ATMs!

» What if ATMs were only updated at night?!
– Embedded systems (robot control: coordinate arm & hand)!

•  Advantage 2: Speedup!
– Overlap I/O and computation!
– Multiprocessors – chop up program into parallel pieces!

•  Advantage 3: Modularity !
– Chop large problem up into simpler pieces!

»  To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld!
» Makes system easier to extend!
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Threaded Web Server"

•  Multithreaded version:!
serverLoop() { 
    connection = AcceptCon(); 
    ThreadCreate(ServiceWebPage(),connection); 
 } 

•  Advantages of threaded version:!
– Can share file caches kept in memory, results of CGI scripts, 

other things!
– Threads are much cheaper to create than processes, so this 

has a lower per-request overhead!
•  What if too many requests come in at once?!
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Thread Pools"
•  Problem with previous version: Unbounded Threads!

– When web-site becomes too popular – throughput sinks!
•  Instead, allocate a bounded “pool” of threads, representing 

the maximum level of multiprogramming!
   

master() { 
   allocThreads(slave,queue); 
   while(TRUE) { 
      con=AcceptCon(); 
      Enqueue(queue,con); 
      wakeUp(queue); 
   } 
} 

slave(queue) { 
   while(TRUE) { 
      con=Dequeue(queue); 
      if (con==null) 
         sleepOn(queue); 
      else 
         ServiceWebPage(con); 
   } 
} 

Master 
Thread 

Thread Pool 

qu
eu

e 
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ATM Bank Server"

•  ATM server problem:!
– Service a set of requests!
– Do so without corrupting database!
– Donʼt hand out too much money!
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ATM bank server example"
•  Suppose we wanted to implement a server process to 

handle requests from an ATM network:!
!BankServer() { 
   while (TRUE) { 
      ReceiveRequest(&op, &acctId, &amount); 
      ProcessRequest(op, acctId, amount); 
   } 
} 
 ProcessRequest(op, acctId, amount) { 
   if (op == deposit) Deposit(acctId, amount); 
   else if … 
} 
 Deposit(acctId, amount) { 
   acct = GetAccount(acctId); /* may use disk I/O */ 
   acct->balance += amount; 
   StoreAccount(acct); /* Involves disk I/O */ 
} 

•  How could we speed this up?!
– More than one request being processed at once!
– Event driven (overlap computation and I/O)!
– Multiple threads (multi-proc, or overlap comp and I/O)!
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Event Driven Version of ATM server"
•  Suppose we only had one CPU!

– Still like to overlap I/O with computation!
– Without threads, we would have to rewrite in event-driven 

style!
•  Example!
! !BankServer() { 

    while(TRUE) { 
       event = WaitForNextEvent(); 
       if (event == ATMRequest) 
          StartOnRequest(); 
       else if (event == AcctAvail) 
          ContinueRequest(); 
       else if (event == AcctStored) 
          FinishRequest(); 
    } 
 } 

– What if we missed a blocking I/O step?!
– What if we have to split code into hundreds of pieces which 

could be blocking?!
– This technique is used for graphical programming!
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Can Threads Make This Easier?"
•  Threads yield overlapped I/O and computation without 

“deconstructing” code into non-blocking fragments!
– One thread per request!

•  Requests proceeds to completion, blocking as required:!
  Deposit(acctId, amount) { 
   acct = GetAccount(actId); /* May use disk I/O */ 
   acct->balance += amount; 
   StoreAccount(acct);   /* Involves disk I/O */ 
 }!

•  Unfortunately, shared state can get corrupted: 
! !Thread 1 ! !Thread 2  
!!load r1, acct->balance 
   load r1, acct->balance 
   add r1, amount2 
   store r1, acct->balance 
 add r1, amount1 
 store r1, acct->balance 
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Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so 

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
! !x = 1; !!
! !    x = y+1; !!

                                                             y = 2;!
                                                             y = y*2!

x=13"
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Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so 

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
!!                                                                      y = 2; !!
!!                                                                      y = y*2; !!

               x = 1;!
               x = y+1;!

x=5"
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Problem is at the lowest level"
•  Most of the time, threads are working on separate data, so 

scheduling doesnʼt matter:!
! !Thread A !Thread B!
! !x = 1; !y = 2; !!

•  However, What about (Initially, y = 12):!
! !Thread A !Thread B!
! !x = 1; !y = 2;!
! !    x = y+1; !   y = y*2;!

– What are the possible values of x?   !
!                     Thread A !Thread B!
!!                                                                      y = 2; !!
! !  x = 1; !!

               x = y+1;!
                                                             y= y*2;!

x=3"
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Atomic Operations"
•  To understand a concurrent program, we need to know what 

the underlying indivisible operations are!!
•  Atomic Operation: an operation that always runs to completion 

or not at all!
–  It is indivisible: it cannot be stopped in the middle and state 

cannot be modified by someone else in the middle!
– Fundamental building block – if no atomic operations, then have 

no way for threads to work together!

•  On most machines, memory references and assignments (i.e. 
loads and stores) of words are atomic!

•  Many instructions are not atomic!
– Double-precision floating point store often not atomic!
– VAX and IBM 360 had an instruction to copy a whole array!
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•  Threaded programs must work for all interleavings of thread 
instruction sequences!

– Cooperating threads inherently non-deterministic and non-
reproducible!

– Really hard to debug unless carefully designed!!
•  Example: Therac-25!

– Machine for radiation therapy!
»  Software control of electron  

accelerator and electron beam/ 
Xray production!

»  Software control of dosage!
– Software errors caused the  

death of several patients!
»  A series of race conditions on  

shared variables and poor  
software design!

»  “They determined that data entry speed during editing was the 
key factor in producing the error condition: If the prescription data 
was edited at a fast pace, the overdose occurred.”!

Correctness Requirements"
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Space Shuttle Example"
•  Original Space Shuttle launch aborted 20 minutes before 

scheduled launch!
•  Shuttle has five computers:!

– Four run the “Primary Avionics  
Software System” (PASS)!

»  Asynchronous and real-time!
» Runs all of the control systems!
» Results synchronized and compared 440 times per second!

– The Fifth computer is the “Backup Flight System” (BFS)!
»  Stays synchronized in case it is needed!
» Written by completely different team than PASS!

•  Countdown aborted because BFS disagreed with PASS!
– A 1/67 chance that PASS was out of sync one cycle!
– Bug due to modifications in initialization code of PASS!

»  A delayed init request placed into timer queue!
»  As a result, timer queue not empty at expected time to force use 

of hardware clock!
– Bug not found during extensive simulation!

PASS 

BFS 
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Another Concurrent Program 
Example"

•  Two threads, A and B, compete with each other!
– One tries to increment a shared counter!
– The other tries to decrement the counter!

! ! !Thread A ! !Thread B!
! !i = 0; ! !i = 0; 

!while (i < 10) !while (i > -10) 
!   i = i + 1; !   i = i – 1; 
!printf(“A wins!”); !printf(“B wins!”);!

•  Assume that memory loads and stores are atomic, but 
incrementing and decrementing are not atomic !

•  Who wins? Could be either!
•  Is it guaranteed that someone wins? Why or why not?!
•  What it both threads have their own CPU running at same 

speed?  Is it guaranteed that it goes on forever?!
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Summary"
•  Concurrent threads are a very useful abstraction!

– Allow transparent overlapping of computation and I/O!
– Allow use of parallel processing when available!

•  Concurrent threads introduce problems when accessing 
shared data!

– Programs must be insensitive to arbitrary interleavings!
– Without careful design, shared variables can become 

completely inconsistent!

•  Important concept: Atomic Operations!
– An operation that runs to completion or not at all!
– These are the primitives on which to construct various 

synchronization primitives!


