Thread Scheduling (con’t)
Protection: Address Spaces

February 23, 2010
Ion Stoica
http://inst.eecs.berkeley.edu/~cs162

Review: Last Time

- **Scheduling**: selecting a waiting process from the ready queue and allocating the CPU to it
- **FCFS Scheduling**:
 - Run threads to completion in order of submission
 - Pros: Simple (+)
 - Cons: Short jobs get stuck behind long ones (-)
- **Round-Robin Scheduling**:
 - Give each thread a small amount of CPU time when it executes; cycle between all ready threads
 - Pros: Better for short jobs (+)
 - Cons: Poor when jobs are same length (-)

Goals for Today

- Finish discussion of Scheduling
- Kernel vs User Mode
- What is an Address Space?
- How is it Implemented?

Example to illustrate benefits of SRTF

- Three jobs:
 - A, B: both CPU bound, run for week
 - C: I/O bound, loop 1ms CPU, 9ms disk I/O
 - If only one at a time, C uses 90% of the disk, A or B could use 100% of the CPU
- With FIFO:
 - Once A or B get in, keep CPU for two weeks
- What about RR or SRTF?
 - Easier to see with a timeline

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne
SRTF Example continued:

<table>
<thead>
<tr>
<th>C</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>I/O</td>
<td>C</td>
</tr>
<tr>
<td>RR 100ms time slice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>I/O</td>
<td>C</td>
</tr>
<tr>
<td>RR 1ms time slice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>I/O</td>
<td>C</td>
</tr>
<tr>
<td>SRTF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Disk Utilization: 9/201 ~ 4.5%

Disk Utilization: ~90% but lots of wakeups!

Disk Utilization: 90%

Review: SRTF Further discussion

- Starvation
 - SRTF can lead to starvation if many small jobs!
 - Large jobs never get to run

- Somehow need to predict future
 - How can we do this?
 - Some systems ask the user
 - When you submit a job, have to say how long it will take
 - To stop cheating, system kills job if takes too long
 - But: Even non-malicious users have trouble predicting runtime of their jobs

- Bottom line, can’t really know how long job will take
 - However, can use SRTF as a yardstick for measuring other policies
 - Optimal, so can’t do any better

- SRTF Pros & Cons
 - Optimal (average response time) (+)
 - Hard to predict future (-)
 - Unfair (-)

Predicting the Length of the Next CPU Burst

- Adaptive: Changing policy based on past behavior
 - CPU scheduling, in virtual memory, in file systems, etc
 - Works because programs have predictable behavior
 - If program was I/O bound in past, likely in future
 - If computer behavior were random, wouldn’t help

- Example: SRTF with estimated burst length
 - Use an estimator function on previous bursts:
 - Let t_{n-1}, t_{n-2}, t_{n-3}, etc. be previous CPU burst lengths.
 - Estimate next burst $\tau_n = f(t_{n-1}, t_{n-2}, t_{n-3}, \ldots)$
 - Function f could be one of many different time series estimation schemes (Kalman filters, etc)
 - For instance, exponential averaging $\tau_n = \alpha t_{n-1} + (1-\alpha)\tau_{n-1}$ with ($0 < \alpha < 1$)

Multi-Level Feedback Scheduling

- Another method for exploiting past behavior
 - First used in CTSS
 - Multiple queues, each with different priority
 - Higher priority queues often considered "foreground" tasks
 - Each queue has its own scheduling algorithm
 - e.g. foreground – RR, background – FCFS
 - Sometimes multiple RR priorities with quantum increasing exponentially (highest:1ms, next:2ms, next:4ms, etc)

- Adjust each job’s priority as follows (details vary)
 - Job starts in highest priority queue
 - If timeout expires, drop one level
 - If timeout doesn’t expire, push up one level (or to top)
Scheduling Details

- Result approximates SRTF:
 - CPU bound jobs drop like a rock
 - Short-running I/O bound jobs stay near top
- Scheduling must be done between the queues
 - Fixed priority scheduling:
 » serve all from highest priority, then next priority, etc.
 - Time slice:
 » each queue gets a certain amount of CPU time
 » e.g., 70% to highest, 20% next, 10% lowest
- Countermeasure: user action that can foil intent of the OS designer
 - For multilevel feedback, put in a bunch of meaningless I/O to keep job’s priority high
 - Of course, if everyone did this, wouldn’t work!
- Example of Othello program:
 - Playing against competitor, so key was to do computing at higher priority the competitor's.
 » Put in printf’s, ran much faster!

Administrivia

- Midterm I coming up in two weeks!:
 - Tuesday 3/9, 3:30-6:30 (this room)
 - Should be 2 hour exam with extra time
 - Closed book, one page of hand-written notes (both sides)
- No class on day of Midterm
 - I will post extra office hours for people who have questions about the material (or life, whatever)
- Midterm Topics
 - Everything up to (and including) Thursday (3/4)
 - History, Concurrency, Multithreading, Synchronization, Protection/Address Spaces/TLBs

Scheduling Fairness

- What about fairness?
 - Strict fixed-priority scheduling between queues is unfair (run highest, then next, etc.):
 » long running jobs may never get CPU
 » In Multics, shut down machine, found 10-year-old job
 - Must give long-running jobs a fraction of the CPU even when there are shorter jobs to run
 - Tradeoff: fairness gained by hurting avg response time!
- How to implement fairness?
 - Could give each queue some fraction of the CPU
 » What if one long-running job and 100 short-running ones?
 » Like express lanes in a supermarket—sometimes express lanes get so long, get better service by going into one of the other lines
 - Could increase priority of jobs that don’t get service
 » What is done in UNIX
 » This is ad hoc—what rate should you increase priorities?
 » And, as system gets overloaded, no job gets CPU time, so everyone increases in priority=Interactive jobs suffer

Lottery Scheduling

- Yet another alternative: Lottery Scheduling
 - Give each job some number of lottery tickets
 - On each time slice, randomly pick a winning ticket
 - On average, CPU time is proportional to number of tickets given to each job
- How to assign tickets?
 - To approximate SRTF, short running jobs get more, long running jobs get fewer
 - To avoid starvation, every job gets at least one ticket (everyone makes progress)
- Advantage over strict priority scheduling: behaves gracefully as load changes
 - Adding or deleting a job affects all jobs proportionally, independent of how many tickets each job possesses
Lottery Scheduling Example

- Lottery Scheduling Example
 - Assume short jobs get 10 tickets, long jobs get 1 ticket

<table>
<thead>
<tr>
<th># short jobs/ # long jobs</th>
<th>% of CPU each short jobs gets</th>
<th>% of CPU each long jobs gets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/1</td>
<td>91%</td>
<td>9%</td>
</tr>
<tr>
<td>0/2</td>
<td>N/A</td>
<td>50%</td>
</tr>
<tr>
<td>2/0</td>
<td>50%</td>
<td>N/A</td>
</tr>
<tr>
<td>10/1</td>
<td>9.9%</td>
<td>0.99%</td>
</tr>
<tr>
<td>1/10</td>
<td>50%</td>
<td>5%</td>
</tr>
</tbody>
</table>

- What if too many short jobs to give reasonable response time?
 » In UNIX, if load average is 100, hard to make progress
 » One approach: log some user out

How to Evaluate a Scheduling algorithm?

- Deterministic modeling
 - takes a predetermined workload and compute the performance of each algorithm for that workload
- Queueing models
 - Mathematical approach for handling stochastic workloads
- Implementation/Simulation:
 - Build system which allows actual algorithms to be run against actual data. Most flexible/general.

A Final Word On Scheduling

- When do the details of the scheduling policy and fairness really matter?
 - When there aren’t enough resources to go around
- When should you simply buy a faster computer?
 - (Or network link, or expanded highway, or ...)
 » One approach: Buy it when it will pay for itself in improved response time
 » Assuming you’re paying for worse response time in reduced productivity, customer angst, etc...
 » Might think that you should buy a faster X when X is utilized 100%, but usually, response time goes to infinity as utilization=100%
- An interesting implication of this curve:
 - Most scheduling algorithms work fine in the “linear” portion of the load curve, fail otherwise
 - Argues for buying a faster X when hit “knee” of curve

Virtualizing Resources

- Different Processes/Threads share the same hardware
 - Need to multiplex CPU (Just finished: scheduling)
 - Need to multiplex use of Memory (Today)
 - Need to multiplex disk and devices (later in term)
- Why worry about memory sharing?
 - The complete working state of a process and/or kernel is defined by its data in memory (and registers)
 - Consequently, cannot just let different threads of control use the same memory
 » Physics: two different pieces of data cannot occupy the same locations in memory
 - Probably don’t want different threads to even have access to each other’s memory (protection)
Recall: Single and Multithreaded Processes

- **Threads encapsulate concurrency**
 - “Active” component of a process
- **Address spaces encapsulate protection**
 - Keeps buggy program from trashing the system
 - “Passive” component of a process

Important Aspects of Memory Multiplexing

- **Controlled overlap:**
 - Separate state of threads should not collide in physical memory. Obviously, unexpected overlap causes chaos!
 - Conversely, would like the ability to overlap when desired (for communication)
- **Translation:**
 - Ability to translate accesses from one address space (virtual) to a different one (physical)
 - When translation exists, processor uses virtual addresses, physical memory uses physical addresses
 - Side effects:
 - Can be used to avoid overlap
 - Can be used to give uniform view of memory to programs
- **Protection:**
 - Prevent access to private memory of other processes
 - Different pages of memory can be given special behavior (Read Only, Invisible to user programs, etc)
 - Kernel data protected from User programs
 - Programs protected from themselves

Binding of Instructions and Data to Memory

- **Binding of instructions and data to addresses:**
 - Choose addresses for instructions and data from the standpoint of the processor

```assembly
data1:              dw  32  0x300  00000020 ...
start:              lw  r1,0(data1)  0x900  8C2000C0
jal  checkit   0x904  0C000340
loop:    addi  r1, r1, -1  0x908  203FFFF
bnz  r1, r0, loop  0x90C  1420FFFF
checkit:   ...
            ...
            ...
```

- Could we place `data1`, `start`, and/or `checkit` at different addresses?
 - Yes
- When? Compile time/Load time/Execution time
- Related: which physical memory locations hold particular instructions or data?

Multi-step Processing of a Program for Execution

- Preparation of a program for execution involves components at:
 - Compile time (i.e. “gcc”)
 - Link/Load time (unix “ld” does link)
 - Execution time (e.g. dynamic libs)
- Addresses can be bound to final values anywhere in this path
 - Depends on hardware support
 - Also depends on operating system
- **Dynamic Libraries**
 - Linking postponed until execution
 - Small piece of code, stub, used to locate the appropriate memory-resident library routine
 - Stub replaces itself with the address of the routine, and executes routine
Recall: Uniprogramming

- Uniprogramming (no Translation or Protection)
 - Application always runs at same place in physical memory since only one application at a time
 - Application can access any physical address
 - Application given illusion of dedicated machine by giving it reality of a dedicated machine
- Of course, this doesn’t help us with multithreading

Multiprogramming (First Version)

- Multiprogramming without Translation or Protection
 - Must somehow prevent address overlap between threads
- Trick: Use Loader/Linker: Adjust addresses while program loaded into memory (loads, stores, jumps)
 - Everything adjusted to memory location of program
 - Translation done by a linker-loader
 - Was pretty common in early days
- With this solution, no protection: bugs in any program can cause other programs to crash or even the OS

Multiprogramming (Version with Protection)

- Can we protect programs from each other without translation?
 - Yes: use two special registers BaseAddr and LimitAddr to prevent user from straying outside designated area
 - If user tries to access an illegal address, cause an error
 - During switch, kernel loads new base/limit from TCB
 - User not allowed to change base/limit registers
- Could use base/limit for dynamic address translation (often called “segmentation”):
 - Alter address of every load/store by adding “base”
 - User allowed to read/write within segment
 - Accesses are relative to segment so don’t have to be relocated when program moved to different segment
 - User may have multiple segments available (e.g. x86)
 - Loads and stores include segment ID in opcode
 - x86 Example: mov [es:bx],ax
 - Operating system moves around segment base pointers as necessary

Segmentation with Base and Limit registers

- Address translation is done by adding base
 - Physical address = Virtual address + Base
 - No: Error!
Issues with simple segmentation method

- Fragmentation problem
 - Not every process is the same size
 - Over time, memory space becomes fragmented
- Hard to do inter-process sharing
 - Want to share code segments when possible
 - Want to share memory between processes
 - Helped by by providing multiple segments per process
- Need enough physical memory for every process

Multiprogramming (Translation and Protection version 2)

- Problem: Run multiple applications in such a way that they are protected from one another
- Goals:
 - Isolate processes and kernel from one another
 - Allow flexible translation that:
 - Doesn’t lead to fragmentation
 - Allows easy sharing between processes
 - Allows only part of process to be resident in physical memory
 - (Some of the required) Hardware Mechanisms:
 - General Address Translation
 - Flexible: Can fit physical chunks of memory into arbitrary places in users address space
 - Not limited to small number of segments
 - Think of this as providing a large number (thousands) of fixed-sized segments (called “pages”)
 - Dual Mode Operation
 - Protection base involving kernel/user distinction

Example of General Address Translation

Two Views of Memory

- Recall: Address Space:
 - All the addresses and state a process can touch
 - Each process and kernel has different address space
- Consequently: two views of memory:
 - View from the CPU (what program sees, virtual memory)
 - View from memory (physical memory)
 - Translation box converts between the two views
- Translation helps to implement protection
 - If task A cannot even gain access to task B’s data, no way for A to adversely affect B
- With translation, every program can be linked/loaded into same region of user address space
 - Overlap avoided through translation, not relocation
Example of Translation Table Format

Two-level Page Tables
32-bit address:

<table>
<thead>
<tr>
<th>10</th>
<th>10</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 index</td>
<td>P2 index</td>
<td>page offset</td>
</tr>
</tbody>
</table>

- 1K PTEs
- 4 bytes
- 4KB

Two-level Page Tables

- 32-bit address:
 - P1 index
 - P2 index
 - Page offset

1K PTEs
4 bytes
4KB

- Page: a unit of memory translatable by memory management unit (MMU)
 - Typically 1K – 8K
- Page table structure in memory
 - Each user has different page table
- Address Space switch: change pointer to base of table (hardware register)
- Hardware traverses page table (for many architectures)
- MIPS uses software to traverse table

For Protection, Lock User-Programs in Asylum

- Idea: Lock user programs in padded cell with no exit or sharp objects
 - Cannot change mode to kernel mode
 - User cannot modify page table mapping
 - Limited access to memory: cannot adversely effect other processes
 - Side-effect: Limited access to memory-mapped I/O operations (I/O that occurs by reading/writing memory locations)
 - Limited access to interrupt controller
 - What else needs to be protected?
- A couple of issues
 - How to share CPU between kernel and user programs?
 - Kinda like both the inmates and the warden in asylum are the same person. How do you manage this???
 - How do programs interact?
 - How does one switch between kernel and user modes?
 - OS → user (kernel → user mode): getting into cell
 - User → OS (user → kernel mode): getting out of cell

Dual-Mode Operation

- Can Application Modify its own translation tables?
 - If it could, could get access to all of physical memory
 - Has to be restricted somehow
- To Assist with Protection, Hardware provides at least two modes (Dual-Mode Operation):
 - "Kernel" mode (or "supervisor" or "protected")
 - "User" mode (Normal program mode)
 - Mode set with bits in special control register only accessible in kernel-mode
- Intel processor actually has four “rings” of protection:
 - PL (Privileged Level) from 0 – 3
 - PLO has full access, PL3 has least
 - Privilege Level set in code segment descriptor (CS)
 - Mirrored “IOPL” bits in condition register gives permission to programs to use the I/O instructions
 - Typical OS kernels on Intel processors only use PL0 (“user”) and PL3 (“kernel”)

How to get from Kernel→User

- What does the kernel do to create a new user process?
 - Allocate and initialize address-space control block
 - Read program off disk and store in memory
 - Allocate and initialize translation table
 - Point at code in memory so program can execute
 - Possibly point at statically initialized data
 - Run Program:
 - Set machine registers
 - Set hardware pointer to translation table
 - Set processor status word for user mode
 - Jump to start of program
- How does kernel switch between processes?
 - Same saving/restoring of registers as before
 - Save/restore PSL (hardware pointer to translation table)
User→Kernel (System Call)

- Can’t let inmate (user) get out of padded cell on own
 - Would defeat purpose of protection!
 - So, how does the user program get back into kernel?

 - System call: Voluntary procedure call into kernel
 - Hardware for controlled User→Kernel transition
 - Can any kernel routine be called?
 » No! Only specific ones.
 - System call ID encoded into system call instruction
 » Index forces well-defined interface with kernel

System Call Continued

- What are some system calls?
 - I/O: open, close, read, write, lseek
 - Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
 - Process: fork, exit, wait (like join)
 - Network: socket create, set options

- Are system calls constant across operating systems?
 - Not entirely, but there are lots of commonalities
 - Also some standardization attempts (POSIX)

- What happens at beginning of system call?
 » On entry to kernel, sets system to kernel mode
 » Handler address fetched from table/Handler started

- System Call argument passing:
 - In registers (not very much can be passed)
 - Write into user memory, kernel copies into kernel mem
 » User addresses must be translated!
 » Kernel has different view of memory than user
 - Every Argument must be explicitly checked!

User→Kernel (Exceptions: Traps and Interrupts)

- A system call instruction causes a synchronous exception (or “trap”)
 - In fact, often called a software “trap” instruction

- Other sources of Synchronous Exceptions:
 - Divide by zero, Illegal instruction, Bus error (bad address, e.g. unaligned access)
 - Segmentation Fault (address out of range)
 - Page Fault (for illusion of infinite-sized memory)

- Interrupts are Asynchronous Exceptions
 - Examples: timer, disk ready, network, etc...
 - Interrupts can be disabled, traps cannot!

- On system call, exception, or interrupt:
 - Hardware enters kernel mode with interrupts disabled
 - Saves PC, then jumps to appropriate handler in kernel
 - For some processors (x86), processor also saves registers, changes stack, etc.
 - Actual handler typically saves registers, other CPU state, and switches to kernel stack

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in “Coprocessor 0”
 - Use mfc0 read contents of these registers:
 » BadVAddr (register 8): contains memory address at which memory reference error occurred
 » Status (register 12): interrupt mask and enable bits
 » Cause (register 13): the cause of the exception
 » EPC (register 14): address of the affected instruction

- Status Register fields:
 - Mask: Interrupt enable
 » 1 bit for each of 5 hardware and 3 software interrupts
 - k = kernel/user: 0=kernel mode
 - e = interrupt enable: 0=interrupts disabled
 - Exception⇒6 LSB shifted left 2 bits, setting 2 LSB to 0:
 » run in kernel mode with interrupts disabled
Communication

• Now that we have isolated processes, how can they communicate?
 - Shared memory: common mapping to physical page
 » As long as place objects in shared memory address range, threads from each process can communicate
 » Note that processes A and B can talk to shared memory through different addresses
 » In some sense, this violates the whole notion of protection that we have been developing
 - If address spaces don’t share memory, all inter-address space communication must go through kernel
 (via system calls)
 » Byte stream producer/consumer (put/get): Example, communicate through pipes connecting stdin/stdout
 » Message passing (send/receive): Will explain later how you can use this to build remote procedure call (RPC)
 abstraction so that you can have one program make procedure calls to another
 » File System (read/write): File system is shared state!

Closing thought: Protection without Hardware

• Does protection require hardware support for translation and dual-mode behavior?
 - No: Normally use hardware, but anything you can do in hardware can also do in software (possibly expensive)
• Protection via Strong Typing
 - Restrict programming language so that you can’t express program that would trash another program
 - Loader needs to make sure that program produced by valid compiler or all bets are off
 - Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:
 - Language independent approach: have compiler generate object code that provably can’t step out of bounds
 » Compiler puts in checks for every “dangerous” operation (loads, stores, etc) again, need special loader.
 » Alternative, compiler generates “proof” that code cannot do certain things (Proof Carrying Code)
• Or: use virtual machine to guarantee safe behavior (loads and stores recompiled on fly to check bounds)
Summary (2)

- Memory is a resource that must be shared
 - Controlled Overlap: only shared when appropriate
 - Translation: Change Virtual Addresses into Physical Addresses
 - Protection: Prevent unauthorized Sharing of resources
- Simple Protection through Segmentation
 - Base+limit registers restrict memory accessible to user
 - Can be used to translate as well
- Full translation of addresses through Memory Management Unit (MMU)
 - Every Access translated through page table
 - Changing of page tables only available to user
- Dual-Mode
 - Kernel/User distinction: User restricted
 - User→Kernel: System calls, Traps, or Interrupts
 - Inter-process communication: shared memory, or through kernel (system calls)