
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 19
Transactions, Two Phase Locking (2PL),

Two Phase Commit (2PC)

November 13, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

Lec 19.211/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Goals of Today’s Lecture
• Finish Transaction scheduling

• Two phase locking (2PL) and strict 2PL

• Two-phase commit (2PC)

Note: Some slides and/or pictures in the following are
adapted from lecture notes by Mike Franklin.

Lec 19.311/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or none
happen

• Consistency: transactions maintain data integrity, e.g.,
– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated from that
of all others; no problems from concurrency

• Durability: if a transaction commits, its effects persist
despite crashes

Lec 19.411/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Transactions

• Group together a set of updates so that they execute
atomically.

• Ensure that the database is in a consistent state before and
after the transaction:

– To move money from account A to B:
– Debit A (read(A), write(A)), and Credit B (read(B), write(B))

• Use locks to prevent conflicts with other clients.

Page 2

Lec 19.511/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Goals of Transaction Scheduling

• Maximize system utilization, i.e., concurrency
– Interleave operations from different transactions

• Preserve transaction semantics
– Semantically equivalent to a serial schedule, i.e., one

transaction runs at a time

T1: R, W, R, W T2: R, W, R, R, W

R, W, R, W, R, W, R, R, W
Serial schedule (T1, then T2):

R, W, R, R, W, R, W, R, W
Serial schedule (T2, then T1):

Lec 19.611/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Two Key Questions

1) Is a given schedule equivalent to a serial execution of
transactions? (color codes the transaction T1 or T2)

2) How do you come up with a schedule equivalent to a
serial schedule?

R, W, R, W, R, W, R, R, W R, W, R, R, W, R, W, R, W

R, R, W, W, R, R, R, W, WSchedule:

Serial schedule (T1, then T2):
:

Serial schedule (T2, then T1):

Lec 19.711/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Transaction Scheduling
• Serial schedule: A schedule that does not interleave

the operations of different transactions
– Transactions run serially (one at a time)

• Equivalent schedules: For any storage/database
state, the effect (on storage/database) and output of
executing the first schedule is identical to the effect of
executing the second schedule

• Serializable schedule: A schedule that is equivalent
to some serial execution of the transactions

– Intuitively: with a serializable schedule you only see
things that could happen in situations where you were
running transactions one-at-a-time

Lec 19.811/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Conflict Serializable Schedules
• Two operations conflict if they

– Belong to different transactions
– Are on the same data
– At least one of them is a write

• Two schedules are conflict equivalent iff:
– Involve same operations of same transactions
– Every pair of conflicting operations is ordered the same way

• Schedule S is conflict serializable if S is conflict equivalent
to some serial schedule

T1 R(X)
T2 W(X,b)

T1 W(X,a)
T2 W(X,b)

Page 3

Lec 19.911/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Conflict Equivalence – Intuition (cont’d)

• If you can transform an interleaved schedule by
swapping consecutive non-conflicting operations of
different transactions into a serial schedule, then the
original schedule is conflict serializable

• Is this schedule serializable?

• Is it conflict serializable? Why?

T1:R(A), W(A)

T2: R(A),W(A),

Lec 19.1011/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Dependency Graph

• Dependency graph:
– Transactions represented as nodes
– Edge from Ti to Tj:

» an operation of Ti conflicts with an operation of Tj
» Ti appears earlier than Tj in the schedule

• Theorem: Schedule is conflict serializable if and only if
its dependency graph is acyclic

Lec 19.1111/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Example

• Conflict serializable schedule:

• No cycle!

T1 T2
A

Dependency graph
B

T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A), R(B),W(B)

Lec 19.1211/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Example

• Conflict that is not serializable:

• Cycle: The output of T1 depends on T2, and vice-
versa

T1:R(A),W(A), R(B),W(B)

T2: R(A),W(A),R(B),W(B)

T1 T2
A

B

Dependency graph

Page 4

Lec 19.1311/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Notes on Conflict Serializability

• Conflict Serializability doesn’t allow all schedules that
you would consider correct
– This is because it is strictly syntactic - it doesn’t consider

the meanings of the operations or the data

• In practice, Conflict Serializability is what gets used,
because it can be done efficiently
– Note: in order to allow more concurrency, some special

cases do get implemented, such as for travel
reservations, …

• Two-phase locking (2PL) is how we implement it

Lec 19.1411/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

T1:R(A), W(A),
T2: W(A),

T3: W(A)

Serializability ≠ Conflict Serializability
• Following schedule is not conflict serializable

• However, the schedule is serializable since its output is
equivalent with the following serial schedule

• Note: deciding whether a schedule is serializable (not
conflict-serializable) is NP-complete

T1 T2
A

Dependency graph

T1:R(A),W(A),
T2: W(A),

T3: WA

T3

A
AA

Lec 19.1511/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Locks
• “Locks” to control access to data

• Two types of locks:
– shared (S) lock – multiple concurrent transactions

allowed to operate on data
– exclusive (X) lock – only one transaction can operate

on data at a time

S X

S  –

X – –

Lock
Compatibility
Matrix

Lec 19.1611/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Two-Phase Locking (2PL)

1) Each transaction must obtain:
– S (shared) or X (exclusive) lock on data before reading,
– X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it
releases any locks

Thus, each transaction has a “growing phase” followed by a
“shrinking phase”

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19

Lo
ck

s
H

el
d

Time

Growing
Phase

Shrinking
Phase

Lock Point!

Avoid deadlock
by acquiring locks
in some
lexicographic order

Page 5

Lec 19.1711/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Two-Phase Locking (2PL)

• 2PL guarantees that the dependency graph of a schedule is
acyclic.

• For every pair of transactions with a conflicting lock, one
acquires is first  ordering of those two  total ordering.

• Therefore 2PL-compatible schedules are conflict serializable.

• Note: 2PL can still lead to deadlocks since locks are acquired
incrementally.

• An important variant of 2PL is strict 2PL, where all locks
are released at the end of the transaction.

Lec 19.1811/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lock Management

• Lock Manager (LM) handles all lock and unlock requests
– LM contains an entry for each currently held lock

• When lock request arrives see if anyone else holds a
conflicting lock

– If not, create an entry and grant the lock
– Else, put the requestor on the wait queue

• Locking and unlocking are atomic operations

• Lock upgrade: share lock can be upgraded to exclusive lock

Lec 19.1911/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Example
• T1 transfers $50 from account A to account B

• T2 outputs the total of accounts A and B

• Initially, A = $1000 and B = $2000

• What are the possible output values?
– 3000, 2950, 3050

T1:Read(A),A:=A‐50,Write(A),Read(B),B:=B+50,Write(B)

T2:Read(A),Read(B),PRINT(A+B)

Lec 19.2011/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Is this a 2PL Schedule?
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Unlock(A) <granted>

6 Read(A)

7 Unlock(A)

8 Lock_S(B) <granted>

9 Lock_X(B)

10 Read(B)

11 <granted> Unlock(B)

12 PRINT(A+B)

13 Read(B)

14 B := B +50

15 Write(B)

16 Unlock(B)

No, and it is not serializable

Page 6

Lec 19.2111/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Is this a 2PL Schedule?
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Unlock(A) <granted>

7 Read(A)

8 Lock_S(B)

9 Read(B)

10 B := B +50

11 Write(B)

12 Unlock(B) <granted>

13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

Yes, so it is serializable
Lec 19.2211/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Cascading Aborts
• Example: T1 aborts

– Note: this is a 2PL schedule

• Rollback of T1 requires rollback of T2, since T2 reads
a value written by T1

• Solution: Strict Two-phase Locking (Strict 2PL):
same as 2PL except
– All locks held by a transaction are released only when

the transaction completes

T1:X(A),R(A),W(A),X(B),~X(A) R(B),W(B),abort
T2: X(A),R(A),W(A),~X(A)

Lec 19.2311/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Strict 2PL (cont’d)

• All locks held by a transaction are released only when
the transaction completes

• In effect, “shrinking phase” is delayed until:
a) Transaction has committed (commit log record on disk),

or
b) Decision has been made to abort the transaction (then

locks can be released after rollback)

Lec 19.2411/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Is this a Strict 2PL schedule?
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Unlock(A) <granted>

7 Read(A)

8 Lock_S(B)

9 Read(B)

10 B := B +50

11 Write(B)

12 Unlock(B) <granted>

13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

No: Cascading Abort Possible

Page 7

Lec 19.2511/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Is this a Strict 2PL schedule?
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Read(B)

7 B := B +50

8 Write(B)

9 Unlock(A)

10 Unlock(B) <granted>

11 Read(A)

12 Lock_S(B) <granted>

13 Read(B)

14 PRINT(A+B)

15 Unlock(A)

16 Unlock(B)

Lec 19.2611/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Administrivia

• Project 3 code due 11:59pm on Thursday 11/21.

• Project 3 group evals due 11:59pm on Friday 11/22.

Lec 19.2711/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

5min Break

Lec 19.2811/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ It is possible for two read operations to
conflict

• Q2: True _ False _ A strict 2PL schedule does not avoid
cascading aborts

• Q3: True _ False _ 2PL leads to deadlock if schedule not
conflict serializable

• Q4: True _ False _ A conflict serializable schedule is always
serializable

• Q5: True _ False _ The following schedule is serializable

Quiz 19.1: Transactions

T1:R(A),W(A), R(B), W(B)

T2: R(A), W(A), R(B),W(B)

Page 8

Lec 19.2911/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ It is possible for two read operations to
conflict

• Q2: True _ False _ A strict 2PL schedule does not avoid
cascading aborts

• Q3: True _ False _ 2PL leads to deadlock if schedule not
conflict serializable

• Q4: True _ False _ A conflict serializable schedule is always
serializable

• Q5: True _ False _ The following schedule is serializable

Quiz 19.1: Transactions

T1:R(A),W(A), R(B), W(B)

T2: R(A), W(A), R(B),W(B)

X

X

X

X

X

Lec 19.3011/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock
• Recall: if a schedule is not conflict-serializable, 2PL

leads to deadlock, i.e.,
– Cycles of transactions waiting for each other to release

locks

• Recall: two ways to deal with deadlocks
– Deadlock prevention
– Deadlock detection

• Many systems punt problem by using timeouts instead
– Associate a timeout with each lock
– If timeout expires release the lock
– What is the problem with this solution?

Lec 19.3111/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Prevention

• Prevent circular waiting

• Assign priorities based on timestamps. Assume Ti
wants a lock that Tj holds. Two policies are possible:

– Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti
aborts (wait chain is acyclic going forward in time)

– Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits
(wait chain is acyclic going backward in time)

• If a transaction re-starts, make sure it gets its original
timestamp
– Why?

Lec 19.3211/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection

• Allow deadlocks to happen but check for them and fix
them if found

• Create a wait-for graph:
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj to

release a lock
• Periodically check for cycles in the waits-for graph

• If cycle detected – find a transaction whose removal
will break the cycle and kill it

Page 9

Lec 19.3311/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Deadlock Detection (Continued)
• Example:

• T1: S(A),S(D), S(B)
• T2: X(B), X(C)
• T3: S(D),S(C), X(A)
• T4: X(B)

T1 T2

T4 T3
Lec 19.3411/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Durability and Atomicity
• How do you make sure transaction results persist in

the face of failures (e.g., disk failures)?

• Replicate database
– Commit transaction to each replica

• What happens if you have failures during a transaction
commit?

– Need to ensure atomicity: either transaction is committed
on all replicas or none at all

Lec 19.3511/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Two Phase (2PC) Commit
• 2PC is a distributed protocol

• High-level problem statement
– If no node fails and all nodes are ready to commit, then

all nodes COMMIT
– Otherwise ABORT at all nodes

• Developed by Turing award winner Jim Gray (first
Berkeley CS PhD, 1969)

Lec 19.3611/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

2PC Algorithm

• One coordinator
• N workers (replicas)

• High level algorithm description
– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator

broadcasts “GLOBAL-COMMIT”,
Otherwise coordinator broadcasts “GLOBAL-ABORT”

– Workers obey the GLOBAL messages

Page 10

Lec 19.3711/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Detailed Algorithm

Coordinator sends VOTE‐REQ to all
workers

– Wait for VOTE‐REQ from coordinator
– If ready, send VOTE‐COMMIT to

coordinator
– If not ready, send VOTE‐ABORT to

coordinator
– And immediately abort

– If receive VOTE‐COMMIT from all N
workers, send GLOBAL‐COMMIT to
all workers

– If doesn’t receive VOTE‐COMMIT
from all N workers, send GLOBAL‐
ABORT to all workers

– If receive GLOBAL‐COMMIT then
commit

– If receive GLOBAL‐ABORT then abort

Coordinator Algorithm Worker Algorithm

Lec 19.3811/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Failure Free Example Execution

coordinator

worker 1

time

VOTE‐
REQ

VOTE‐
COMMIT

GLOBAL‐
COMMIT

worker 2

worker 3

Lec 19.3911/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

State Machine of Coordinator

• Coordinator implements simple state machine

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT

Lec 19.4011/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT

Page 11

Lec 19.4111/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Dealing with Worker Failures

• How to deal with worker failures?
– Failure only affects states in which the node is waiting for

messages
– Coordinator only waits for votes in “WAIT” state
– In WAIT, if doesn’t receive

N votes, it times out and sends
GLOBAL-ABORT

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT

Lec 19.4211/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Example of Worker Failure

coordinator

worker 1

time

VOTE‐REQ

VOTE‐
COMMIT

GLOBAL‐
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3

Lec 19.4311/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Dealing with Coordinator Failure

• How to deal with coordinator failures?
– worker waits for VOTE-REQ in INIT

» Worker can time out and abort (coordinator handles it)
– worker waits for GLOBAL-* message in READY

» If coordinator fails, workers must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT

Lec 19.4411/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Example of Coordinator Failure #1

coordinator

worker 1

VOTE‐
REQ

VOTE‐
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3

Page 12

Lec 19.4511/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Example of Coordinator Failure #2

VOTE‐REQ

VOTE‐
COMMIT

INIT

READY

ABORT COMM

block waiting for
coordinator

restarted

GLOBAL‐
ABORT

coordinator

worker 1

worker 2

worker 3

Lec 19.4611/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Remembering Where We Were (Durability)
• All nodes use stable storage* to store which state they are

in

• Upon recovery, it can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, READY, ABORT
– Worker commits in COMMIT
– Worker asks Coordinator in READY

* - stable storage is non-volatile storage (e.g. backed by
disk) that guarantees atomic writes.

Lec 19.4711/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Blocking for Coordinator to Recover
• A worker waiting for global decision

can ask fellow workers about their
state

– If another worker is in ABORT or
COMMIT state then coordinator must
have sent GLOBAL-*

– Thus, worker can safely abort or
commit, respectively

– If another worker is still in INIT state
then both workers can decide to abort

– If all workers are in ready, need to
BLOCK (don’t know if coordinator
wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT

Lec 19.4811/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Strict 2PL schedules prevent deadlock
• Q2: 2PC in a distributed system ensures (tick all that apply):

True _ False _ Atomicity
True _ False _ Consistency
True _ False _ Isolation
True _ False _ Durability

• Q3: True _ False _ 2PC prevents workers from blocking
during a commit.

• Q4: True _ False _ The coordinator maintains its state after a
power failure.

Quiz 19.2: Distributed Execution

Page 13

Lec 19.4911/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Strict 2PL schedules prevent deadlock
• Q2: 2PC in a distributed system ensures (tick all that apply):

True _ False _ Atomicity
True _ False _ Consistency
True _ False _ Isolation
True _ False _ Durability

• Q3: True _ False _ 2PC prevents workers from blocking
during a commit.

• Q4: True _ False _ The coordinator maintains its state after a
power failure.

Quiz 19.2: Distributed Execution
X

X
X
X

X
X

X

Lec 19.5011/13/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Summary

• Correctness criterion for transactions is “Serializability”
– In practice, we use “Conflict Serializability”, which is

somewhat more restrictive but easy to enforce

• Two phase locking (2PL) and strict 2PL
– Ensure conflict-serializability for R/W operations
– Deadlocks can be either detected or prevented

• Two-phase commit (2PC)
– Ensure atomicity and durability: a transaction is

committed/aborted either by all replicas or by none of them

