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Goals of Today’s Lecture
• Finish Transaction scheduling 

• Two phase locking (2PL) and strict 2PL

• Two-phase commit (2PC)

Note: Some slides and/or pictures in the following are
adapted from lecture notes by Mike Franklin.
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The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or none 
happen

• Consistency: transactions maintain data integrity, e.g.,
– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated from that 
of all others; no problems from concurrency

• Durability: if a transaction commits, its effects persist 
despite crashes
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Transactions

• Group together a set of updates so that they execute 
atomically.

• Ensure that the database is in a consistent state before and 
after the transaction:

– To move money from account A to B:
– Debit A (read(A), write(A)), and Credit B (read(B), write(B))

• Use locks to prevent conflicts with other clients. 
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Goals of Transaction Scheduling

• Maximize system utilization, i.e., concurrency
– Interleave operations from different transactions

• Preserve transaction semantics
– Semantically equivalent to a serial schedule, i.e., one 

transaction runs at a time 

T1: R, W, R, W T2: R, W, R, R, W

R, W, R, W, R, W, R, R, W
Serial schedule (T1, then T2):

R, W, R, R, W, R, W, R, W
Serial schedule (T2, then T1):
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Two Key Questions

1) Is a given schedule equivalent to a serial execution of 
transactions? (color codes the transaction T1 or T2) 

2) How do you come up with a schedule equivalent to a 
serial schedule?

R, W, R, W, R, W, R, R, W R, W, R, R, W, R, W, R, W

R, R, W, W, R, R, R, W, WSchedule:

Serial schedule (T1, then T2):
:

Serial schedule (T2, then T1):
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Transaction Scheduling
• Serial schedule: A schedule that does not interleave

the operations of different transactions
– Transactions run serially (one at a time)

• Equivalent schedules: For any storage/database 
state, the effect (on storage/database) and output of 
executing the first schedule is identical to the effect of 
executing the second schedule

• Serializable schedule: A schedule that is equivalent 
to some serial execution of the transactions

– Intuitively: with a serializable schedule you only see 
things that could happen in situations where you were 
running transactions one-at-a-time
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Conflict Serializable Schedules
• Two operations conflict if they

– Belong to different transactions
– Are on the same data 
– At least one of them is a write

• Two schedules are conflict equivalent iff:
– Involve same operations of same transactions 
– Every pair of conflicting operations is ordered the same way

• Schedule S is conflict serializable if S is conflict equivalent 
to some serial schedule

T1     R(X)
T2                  W(X,b)

T1     W(X,a)
T2                 W(X,b)
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Conflict Equivalence – Intuition  (cont’d)

• If you can transform an interleaved schedule by 
swapping consecutive non-conflicting operations of 
different transactions into a serial schedule, then the 
original schedule is conflict serializable

• Is this schedule serializable?

• Is it conflict serializable? Why? 

T1:R(A),          W(A)

T2:     R(A),W(A), 
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Dependency Graph

• Dependency graph:  
– Transactions represented as nodes
– Edge from Ti to Tj: 

» an operation of Ti conflicts with an operation of Tj
» Ti appears earlier than Tj in the schedule

• Theorem: Schedule is conflict serializable if and only if 
its dependency graph is acyclic
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Example

• Conflict serializable schedule:

• No cycle!

T1 T2
A

Dependency graph
B

T1:R(A),W(A),          R(B),W(B)

T2:          R(A),W(A),         R(B),W(B)     
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Example

• Conflict that is not serializable:

• Cycle: The output of T1 depends on T2, and vice-
versa

T1:R(A),W(A),                   R(B),W(B)

T2:          R(A),W(A),R(B),W(B)          

T1 T2
A

B

Dependency graph
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Notes on Conflict Serializability

• Conflict Serializability doesn’t allow all schedules that 
you would consider correct
– This is because it is strictly syntactic - it doesn’t consider 

the meanings of the operations or the data

• In practice, Conflict Serializability is what gets used, 
because it can be done efficiently
– Note: in order to allow more concurrency, some special 

cases do get implemented, such as for travel 
reservations, …

• Two-phase locking (2PL) is how we implement it
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T1:R(A),     W(A),     
T2:     W(A),

T3:              W(A)

Serializability ≠ Conflict Serializability
• Following schedule is not conflict serializable

• However, the schedule is serializable since its output is 
equivalent with the following serial schedule

• Note: deciding whether a schedule is serializable (not 
conflict-serializable) is NP-complete  

T1 T2
A

Dependency graph

T1:R(A),W(A),     
T2:          W(A),

T3:               WA   

T3

A
AA
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Locks
• “Locks” to control access to data

• Two types of locks:
– shared (S) lock – multiple concurrent transactions 

allowed to operate on data
– exclusive (X) lock – only one transaction can operate 

on data at a time

S X

S  –

X – –

Lock
Compatibility
Matrix
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Two-Phase Locking (2PL)

1) Each transaction must obtain: 
– S (shared) or X (exclusive) lock on data before reading, 
– X (exclusive) lock on data before writing

2) A transaction can not request additional locks once it 
releases any locks

Thus, each transaction has a “growing phase” followed by a 
“shrinking phase”

0

1

2

3

4

1 3 5 7 9 11 13 15 17 19
# 

Lo
ck

s 
H

el
d

Time

Growing
Phase

Shrinking
Phase

Lock Point!

Avoid deadlock
by acquiring locks
in some 
lexicographic order
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Two-Phase Locking (2PL)

• 2PL guarantees that the dependency graph of a schedule is 
acyclic. 

• For every pair of transactions with a conflicting lock, one 
acquires is first  ordering of those two  total ordering. 

• Therefore 2PL-compatible schedules are conflict serializable. 

• Note: 2PL can still lead to deadlocks since locks are acquired 
incrementally.

• An important variant of 2PL is strict 2PL, where all locks 
are released at the end of the transaction. 
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Lock Management

• Lock Manager (LM) handles all lock and unlock requests
– LM contains an entry for each currently held lock

• When lock request arrives see if anyone else holds a 
conflicting lock

– If not, create an entry and grant the lock
– Else, put the requestor on the wait queue

• Locking and unlocking are atomic operations

• Lock upgrade: share lock can be upgraded to exclusive lock
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Example
• T1 transfers $50 from account A to account B

• T2 outputs the total of accounts A and B

• Initially, A = $1000 and B = $2000

• What are the possible output values?
– 3000, 2950, 3050

T1:Read(A),A:=A‐50,Write(A),Read(B),B:=B+50,Write(B)

T2:Read(A),Read(B),PRINT(A+B)
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Is this a 2PL Schedule?
1 Lock_X(A)   <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Unlock(A) <granted>

6 Read(A)

7 Unlock(A)

8 Lock_S(B) <granted>

9 Lock_X(B)

10 Read(B)

11 <granted> Unlock(B)

12 PRINT(A+B)

13 Read(B)

14 B := B +50

15 Write(B)

16 Unlock(B)

No, and it is not serializable
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Is this a 2PL Schedule?
1 Lock_X(A)  <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B)  <granted>

6 Unlock(A) <granted>

7 Read(A)

8 Lock_S(B)

9 Read(B)

10 B := B +50

11 Write(B)

12 Unlock(B) <granted>

13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

Yes, so it is serializable
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Cascading Aborts
• Example: T1 aborts

– Note: this is a 2PL schedule

• Rollback of T1 requires rollback of T2, since T2 reads 
a value written by T1

• Solution: Strict Two-phase Locking (Strict 2PL): 
same as 2PL except
– All locks held by a transaction are released only when 

the transaction completes

T1:X(A),R(A),W(A),X(B),~X(A)                  R(B),W(B),abort
T2:           X(A),R(A),W(A),~X(A)         
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Strict 2PL (cont’d)

• All locks held by a transaction are released only when 
the transaction completes

• In effect, “shrinking phase” is delayed until:
a) Transaction has committed (commit log record on disk), 

or
b) Decision has been made to abort the transaction (then 

locks can be released after rollback)
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Is this a Strict 2PL schedule?
1 Lock_X(A)  <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B)  <granted>

6 Unlock(A) <granted>

7 Read(A)

8 Lock_S(B)

9 Read(B)

10 B := B +50

11 Write(B)

12 Unlock(B) <granted>

13 Unlock(A)

14 Read(B)

15 Unlock(B)

16 PRINT(A+B)

No: Cascading Abort Possible
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Is this a Strict 2PL schedule?
1 Lock_X(A) <granted>

2 Read(A) Lock_S(A)

3 A: = A-50

4 Write(A)

5 Lock_X(B) <granted>

6 Read(B)

7 B := B +50

8 Write(B)

9 Unlock(A)

10 Unlock(B) <granted>

11 Read(A)

12 Lock_S(B)  <granted>

13 Read(B)

14 PRINT(A+B)

15 Unlock(A)

16 Unlock(B)
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Administrivia

• Project 3 code due 11:59pm on Thursday 11/21.

• Project 3 group evals due 11:59pm on Friday 11/22.
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5min Break
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• Q1: True _  False _  It is possible for two read operations to 
conflict

• Q2: True _  False _  A strict 2PL schedule does not avoid 
cascading aborts

• Q3: True _  False _  2PL leads to deadlock if schedule not 
conflict serializable 

• Q4: True _  False _  A conflict serializable schedule is always 
serializable

• Q5: True _  False _  The following schedule is serializable

Quiz 19.1: Transactions

T1:R(A),W(A),     R(B),     W(B)

T2:          R(A),    W(A),      R(B),W(B)    
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• Q1: True _  False _  It is possible for two read operations to 
conflict

• Q2: True _  False _  A strict 2PL schedule does not avoid 
cascading aborts

• Q3: True _  False _  2PL leads to deadlock if schedule not 
conflict serializable 

• Q4: True _  False _  A conflict serializable schedule is always 
serializable

• Q5: True _  False _  The following schedule is serializable

Quiz 19.1: Transactions

T1:R(A),W(A),     R(B),     W(B)

T2:          R(A),    W(A),      R(B),W(B)    

X

X

X

X

X
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Deadlock
• Recall: if a schedule is not conflict-serializable, 2PL 

leads to deadlock, i.e.,
– Cycles of transactions waiting for each other to release 

locks

• Recall: two ways to deal with deadlocks
– Deadlock prevention
– Deadlock detection

• Many systems punt problem by using timeouts instead
– Associate a timeout with each lock
– If timeout expires release the lock
– What is the problem with this solution?
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Deadlock Prevention

• Prevent circular waiting

• Assign priorities based on timestamps. Assume Ti 
wants a lock that Tj holds. Two policies are possible:

– Wait-Die: If Ti is older, Ti waits for Tj; otherwise Ti 
aborts (wait chain is acyclic going forward in time)

– Wound-wait: If Ti is older, Tj aborts; otherwise Ti waits
(wait chain is acyclic going backward in time)

• If a transaction re-starts, make sure it gets its original 
timestamp
– Why?
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Deadlock Detection

• Allow deadlocks to happen but check for them and fix 
them if found

• Create a wait-for graph:
– Nodes are transactions
– There is an edge from Ti to Tj if Ti is waiting for Tj to 

release a lock
• Periodically check for cycles in the waits-for graph

• If cycle detected – find a transaction whose removal 
will break the cycle and kill it
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Deadlock Detection (Continued)
• Example:

• T1:  S(A),S(D), S(B)
• T2: X(B),  X(C)
• T3: S(D),S(C),    X(A)
• T4: X(B)

T1 T2

T4 T3
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Durability and Atomicity
• How do you make sure transaction results persist in 

the face of failures (e.g., disk failures)? 

• Replicate database
– Commit transaction to each replica

• What happens if you have failures during a transaction 
commit?

– Need to ensure atomicity: either transaction is committed 
on all replicas or none at all
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Two Phase (2PC) Commit
• 2PC is a distributed protocol

• High-level problem statement
– If no node fails and all nodes are ready to commit, then 

all nodes COMMIT
– Otherwise ABORT at all nodes

• Developed by Turing award winner Jim Gray (first 
Berkeley CS PhD, 1969)
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2PC Algorithm

• One coordinator 
• N workers (replicas) 

• High level algorithm description
– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator 

broadcasts “GLOBAL-COMMIT”, 
Otherwise coordinator broadcasts “GLOBAL-ABORT”

– Workers obey the GLOBAL messages
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Detailed Algorithm

Coordinator sends VOTE‐REQ to all 
workers

– Wait for VOTE‐REQ from coordinator
– If ready, send VOTE‐COMMIT to 

coordinator
– If not ready, send VOTE‐ABORT to 

coordinator
– And immediately abort

– If receive VOTE‐COMMIT from all N 
workers, send GLOBAL‐COMMIT to 
all workers

– If doesn’t receive VOTE‐COMMIT
from all N workers, send GLOBAL‐
ABORT to all workers

– If receive GLOBAL‐COMMIT then 
commit

– If receive GLOBAL‐ABORT then abort

Coordinator Algorithm Worker Algorithm
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Failure Free Example Execution

coordinator

worker 1

time

VOTE‐
REQ

VOTE‐
COMMIT

GLOBAL‐
COMMIT

worker 2

worker 3
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State Machine of Coordinator

• Coordinator implements simple state machine

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT
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State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Dealing with Worker Failures

• How to deal with worker failures?
– Failure only affects states in which the node is waiting for 

messages
– Coordinator only waits for votes in “WAIT” state
– In WAIT, if doesn’t receive 

N votes, it times out and sends
GLOBAL-ABORT

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT
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Example of Worker Failure

coordinator

worker 1

time

VOTE‐REQ

VOTE‐
COMMIT

GLOBAL‐
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3
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Dealing with Coordinator Failure

• How to deal with coordinator failures?
– worker waits for VOTE-REQ in INIT

» Worker can time out and abort (coordinator handles it)
– worker waits for GLOBAL-* message in READY

» If coordinator fails, workers must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Example of Coordinator Failure #1

coordinator

worker 1

VOTE‐
REQ

VOTE‐
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3
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Example of Coordinator Failure #2

VOTE‐REQ

VOTE‐
COMMIT

INIT

READY

ABORT COMM

block waiting for 
coordinator

restarted

GLOBAL‐
ABORT

coordinator

worker 1

worker 2

worker 3
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Remembering Where We Were (Durability)
• All nodes use stable storage* to store which state they are 

in

• Upon recovery, it can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, READY, ABORT
– Worker commits in COMMIT
– Worker asks Coordinator in READY

* - stable storage is non-volatile storage (e.g. backed by 
disk) that guarantees atomic writes. 
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Blocking for Coordinator to Recover
• A worker waiting for global decision 

can ask fellow workers about their 
state

– If another worker is in ABORT or 
COMMIT state then coordinator must 
have sent GLOBAL-*

– Thus, worker can safely abort or 
commit, respectively

– If another worker is still in INIT state
then both workers can decide to abort 

– If all workers are in ready, need to 
BLOCK (don’t know if coordinator 
wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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• Q1: True _  False _  Strict 2PL schedules prevent deadlock
• Q2: 2PC in a distributed system ensures (tick all that apply):

True _ False _ Atomicity
True _ False _ Consistency
True _ False _ Isolation
True _ False _ Durability

• Q3: True _  False _  2PC prevents workers from blocking 
during a commit. 

• Q4: True _  False _  The coordinator maintains its state after a 
power failure.

Quiz 19.2: Distributed Execution
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• Q1: True _  False _  Strict 2PL schedules prevent deadlock
• Q2: 2PC in a distributed system ensures (tick all that apply):

True _ False _ Atomicity
True _ False _ Consistency
True _ False _ Isolation
True _ False _ Durability

• Q3: True _  False _  2PC prevents workers from blocking 
during a commit. 

• Q4: True _  False _  The coordinator maintains its state after a 
power failure.

Quiz 19.2: Distributed Execution
X

X
X
X

X
X

X
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Summary

• Correctness criterion for transactions is “Serializability”
– In practice, we use “Conflict Serializability”, which is 

somewhat more restrictive but easy to enforce

• Two phase locking (2PL) and strict 2PL
– Ensure conflict-serializability for R/W operations
– Deadlocks can be either detected or prevented

• Two-phase commit (2PC)
– Ensure atomicity and durability: a transaction is 

committed/aborted either by all replicas or by none of them


