
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 12

Kernel/User, I/O

October 14, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

12.210/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Inverse Page Tables (IPT) table size
grows with virtual memory allocation.

• Q2: True _ False _ IPTs get slower when physical memory
is mostly allocated.

• Q3: True _ False _ Increasing the number of frames for
LRU page replacement gives the same or lower miss rate.

• Q4: True _ False _ Increasing the number of frames for
Second Chance page replacement gives the same or lower
miss rate.

• Q5: True _ False _ The Clock Algorithm requires the OS to
keep track of page accesses as well as faults .

Quiz 12.1: Paging

12.310/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Inverse Page Tables (IPT) table size
grows with virtual memory allocation.

• Q2: True _ False _ IPTs get slower when physical memory
is mostly allocated.

• Q3: True _ False _ Increasing the number of frames for
LRU page replacement gives the same or lower miss rate.

• Q4: True _ False _ Increasing the number of frames for
Second Chance page replacement gives the same or lower
miss rate.

• Q5: True _ False _ The Clock Algorithm requires the OS to
keep track of page accesses as well as faults .

Quiz 12.1: Paging
X

X

X

X

X

12.410/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Finish Demand Paging: Trashing and Working Sets
• Dual Mode Operation: Kernel versus User Mode
• I/O Systems

– Hardware Access
– Device Drivers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Goals for Today

Page 2

12.510/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Thrashing

• If a process does not have “enough” pages, the page-fault
rate is very high. This leads to:

– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing  a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

12.610/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Program Memory Access
Patterns have temporal and
spatial locality

– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working SetThrashing

– Better to swap out process?

Locality In A Memory-Reference Pattern

12.710/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Working-Set Model

•   working-set window  fixed number of page references
– Example: 10,000 accesses

• WSi (working set of Process Pi) = total set of pages
referenced in the most recent  (varies in time)

– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =   will encompass entire program

• D = |WSi|  total demand frames
• if D > physical memory  Thrashing

– Policy: if D > physical memory, then suspend/swap out
processes

– This can improve overall system behavior by a lot!
12.810/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

What about Compulsory Misses?
• Recall that compulsory misses are misses that occur the

first time that a page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped out/swapped

back in
• Clustering:

– On a page-fault, bring in multiple pages “around” the faulting
page

– Since efficiency of disk reads increases with sequential reads,
makes sense to read several sequential pages

– Tradeoff: Prefetching may evict other in-use pages for never-
used prefetched pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Page 3

12.910/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Review: Example of General Address Translation

Prog 1
Virtual

Address
Space 1

Prog 2
Virtual

Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space
12.1010/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Dual-Mode Operation
• Can an application modify its own translation maps or PTE

bits?
– If it could, could get access to all of physical memory
– Has to be restricted somehow

• To assist with protection, hardware provides at least two
modes (Dual-Mode Operation):

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bits in special control register only accessible in

kernel-mode

• Intel processors actually have four “rings” of protection:
– PL (Privilege Level) from 0 – 3

» PL0 has full access, PL3 has least
– Typical OS kernels on Intel processors only use PL0 (“kernel”)

and PL3 (“user”)

12.1110/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

For Protection, Lock User-Programs in Asylum
• Idea: Lock user programs in padded cell

with no exit or sharp objects
– Cannot change mode to kernel mode
– Cannot modify translation maps
– Limited access to memory: cannot

adversely effect other processes
– What else needs to be protected?

• A couple of issues
– How to share CPU between kernel and user programs?
– How does one switch between kernel and user modes?

» OS  user (kernel  user mode): getting into cell
» User OS (user  kernel mode): getting out of cell

12.1210/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

How to get from KernelUser
• What does the kernel do to create a new user process?

– Allocate and initialize process control block
– Read program off disk and store in memory
– Allocate and initialize translation map

» Point at code in memory so program can execute
» Possibly point at statically initialized data

– Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before
– Save/restore hardware pointer to translation map

Page 4

12.1310/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

UserKernel (System Call)
• Can’t let inmate (user) get out of padded cell on own

– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled UserKernel transition
– Can any kernel routine be called?

» No! Only specific ones
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel

I/O: open, close, read, write, lseek
Files: delete, mkdir, rmdir, chown
Process: fork, exit, join
Network: socket create, select

12.1410/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

System Call (cont’d)

• Are system calls the same across operating systems?
– Not entirely, but there are lots of commonalities
– Also some standardization attempts (POSIX)

• What happens at beginning of system call?
– On entry to kernel, sets system to kernel mode
– Handler address fetched from table, and Handler started

• System Call argument passing:
– In registers (not very much can be passed)
– Write into user memory, kernel copies into kernel memory
– Every argument must be explicitly checked!

12.1510/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

UserKernel (Exceptions: Traps and Interrupts)
• System call instr. causes a synchronous exception (or “trap”)

– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions:
– Divide by zero, Illegal instruction, Bus error (bad address, e.g.

unaligned access)
– Segmentation Fault (address out of range)
– Page Fault

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• SUMMARY – On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves registers,

changes stack, etc.
12.1610/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Modern I/O Systems

Page 5

12.1710/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

What is the Role of I/O?

• Without I/O, computers are useless (disembodied brains?)

• But… thousands of devices, each slightly different
– How can we standardize the interfaces to these devices?

• Devices unreliable: media failures and transmission errors
– How can we make them reliable???

• Devices unpredictable and/or slow
– How can we manage them if we don’t know what they will do or

how they will perform?

12.1810/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Administrivia

• Midterm #1 is Monday Oct 21 5:30-7pm in
145 Dwinelle (A-L) and 2060 Valley LSB (M-Z)

– Closed book, double-sided handwritten page of notes,
no calculators, smartphones, Google glass etc.

– Covers lectures #1-13 (Disks/SSDs, Filesystems), readings,
handouts, and projects 1 and 2

– Review session 390 Hearst Mining, Fri October 18, 5-7 PM

• Project 2 design docs due Thursday, 11:59pm

• Course Survey is online:
https://www.surveymonkey.com/s/FSW3HVJ

12.1910/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

5min Break

12.2010/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Operational Parameters for I/O

• Data granularity: Byte vs. Block
– Some devices provide single byte at a time (e.g., keyboard)
– Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
– Some devices must be accessed sequentially (e.g., tape)
– Others can be accessed randomly (e.g., disk, cd, etc.)

• Transfer mechanism: Polling vs. Interrupts
– Some devices require continual monitoring
– Others generate interrupts when they need service

Page 6

12.2110/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Example Device-Transfer Rates in Mb/s
(Sun Enterprise 6000)

• Device Rates vary over many orders of magnitude
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

10m

12.2210/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

The Goal of the I/O Subsystem
• Provide uniform interfaces, despite wide range of different

devices
– This code works on many different devices:

FILE fd = fopen(“/dev/something”,“rw”);
for (int i = 0; i < 10; i++) {

fprintf(fd, “Count %d\n”,i);
}
close(fd);

– Why? Because code that controls devices (“device driver”)
implements standard interface

• We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture

– Can only scratch surface!

12.2310/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Want Standard Interfaces to Devices
• Block Devices: e.g., disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character/Byte Devices: e.g., keyboards, mice, serial ports,
some USB devices

– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g., Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

12.2410/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

How Does User Deal with Timing?
• Blocking Interface: “Wait”

– When request data (e.g., read() system call), put process to
sleep until data is ready

– When write data (e.g., write() system call), put process to
sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes

successfully transferred to kernel
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When requesting data, take pointer to user’s buffer, return

immediately; later kernel fills buffer and notifies user
– When sending data, take pointer to user’s buffer, return

immediately; later kernel takes data and notifies user

Page 7

12.2510/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Kernel vs User-level I/O
• Both are popular/practical for different reasons:

– Kernel-level drivers for critical devices that must keep running,
e.g. display drivers.

» Programming is a major effort, correct operation of the rest of the
kernel depends on correct driver operation.

– User-level drivers for devices that are non-threatening, e.g USB
devices in Linux (libusb).

» Provide higher-level primitives to the programmer, avoid every
driver doing low-level I/O register tweaking.

» The multitude of USB devices can be supported by Less-Than-
Wizard programmers.

» New drivers don’t have to be compiled for each version of the OS,
and loaded into the kernel.

12.2610/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Kernel vs User-level Programming Styles
• Kernel-level drivers

– Have a much more limited set of resources available:
» Only a fraction of libc routines typically available.
» Memory allocation (e.g. Linux kmalloc) much more limited in

capacity and required to be physically contiguous.
» Should avoid blocking calls.
» Can use asynchrony with other kernel functions but tricky with user

code.

• User-level drivers
– Similar to other application programs but:

» Will be called often – should do its work fast, or postpone it – or do
it in the background.

» Can use threads, blocking operations (usually much simpler) or
non-blocking or asynchronous.

12.2710/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

PCI Bus evolution
• PCI started life out as a bus

– 32 physical bits double for address/data
• But parallel busses have many limitations

– multiplexing address/data for many requests
– Slowest device must be able to tell what’s happening
– Bus speed is set to that of the slowest device

12.2810/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

PCI Express “Bus”
• No longer a parallel bus
• Really a collection of fast serial channels or “lanes”
• Devices can use as many as they need to achieve a

desired bandwidth
• Slow devices don’t have to share with fast ones.
• Both motherboard slots and daughter cards are sized

for the number of lanes, x4, x8, or x16
• Speeds (in an x16 configuration):

– v1.x: 4 GB/s (40 GT/s)
– v2.x: 8 GB/s (80 GT/s)
– v3.0: 15.75 GB/s (128 GT/s)
– v4.0: 31.51 GB/s (256 GT/s)
3.0+ Speeds are competitive
with block memory-to-memory operations on the CPU.

Page 8

12.2910/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

PCI Express Bus
In practice PCI is used as the interface to many other
interconnects on a PC:

Figure from “Linux Device Drivers,” 3rd Ed, Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman

12.3010/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

PCI Express Interface (Linux)
• One of the successes of device abstraction in Linux was the ability to

migrate from PCI to PCI-Express.
• Although the physical interconnect changed completely, the old API

still worked.
• Drivers written for older PCI devices still worked, because of the

standardized API for both models of the interface.
• PCI register map:

Figure from “Linux Device Drivers,” 3rd Ed, Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman

12.3110/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Device
Controller

read
write

control
status

Addressable
Memory
and/or

QueuesRegisters
(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How Does the Processor Talk to Devices?

• CPU interacts with a Controller
– Contains a set of registers that

can be read and written
– May contain memory for request

queues or bit-mapped images
• Regardless of the complexity of the connections and buses,

processor accesses registers in two ways:
– I/O instructions: in/out instructions (e.g., Intel’s 0x21,AL)
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Other Devices
or BusesInterrupt

Controller

Bus
Adaptor

Bus
Adaptor

12.3210/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Example: Memory-Mapped Display
Controller

• Memory-Mapped:
– Hardware maps control registers and display

memory into physical address space
» Addresses set by hardware jumpers or

programming at boot time
– Simply writing to display memory (also called

the “frame buffer”) changes image on screen
» Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to command-
queue area

» Say enter a set of triangles that describe
some scene

» Addr: 0x80010000—0x8001FFFF
– Writing to the command register may cause

on-board graphics hardware to do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command

Queue

0x80020000

Page 9

12.3310/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Transferring Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

12.3410/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

I/O Device Notifying the OS
• The OS needs to know when:

–The I/O device has completed an operation
–The I/O operation has encountered an error

• I/O Interrupt:
–Device generates an interrupt whenever it needs service
–Pro: handles unpredictable events well
–Con: interrupts relatively high overhead

• Polling:
–OS periodically checks a device-specific status register

» I/O device puts completion information in status register
–Pro: low overhead
–Con: may waste many cycles on polling if infrequent or

unpredictable I/O operations
• Actual devices combine both polling and interrupts

–For instance – High-bandwidth network adapter:
» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

12.3510/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

USB Topology and Mastering
• USB is a complex standard with a simple communication

model.
• It’s a complex (tree) topology, but the CPU is always the

master.

12.3610/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

USB Topology and Mastering
• Each device exposes one or more “endpoints” for

communication, control, or interrupts.

Figure from “Linux Device Drivers,” 3rd Ed, Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman

Page 10

12.3710/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

USB Topology and Mastering
• Each device exposes one or more “endpoints” for

communication, control, or interrupts.
• The driver infrastructure (libusb) takes care of actual

communication and provides a high-level (blocking) bulk
communication primitive.

Figure from “Linux Device Drivers,” 3rd Ed, Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman

12.3810/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization approaches

100%
– Solutions?

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

12.3910/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

• Solutions?
– Make everything faster 
– Decouple systems

» multiple independent buses
» or tree-structured buses with higher root bandwidth

– Buffering (as long as you don’t have to wait for it) and spooling
» Give the processor something to do that gets the data “closer” to its

endpoint.

100%

Response
Time (ms)

Throughput (Utilization)
(% total BW)

0

100

200

300

0%

12.4010/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ With an asynchronous interface, the
writer may need to block until the data is written

• Q2: True _ False _ Interrupts are more efficient than
polling for handling very frequent requests

• Q3: True _ False _ Segmentation fault is an example of
synchronous exception (trap)

• Q4: True _ False _ DMA is more efficient than
programmed I/O for transferring large volumes of data

• Q5: In a I/O subsystem the queuing time for a request is
10ms and the request’s service time is 40ms. Then the total
response time of the request is ___ ms

Quiz 12.2: I/O

Page 11

12.4110/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ With an asynchronous interface, the
writer may need to block until the data is written

• Q2: True _ False _ Interrupts are more efficient than
polling for handling very frequent requests

• Q3: True _ False _ Segmentation fault is an example of
synchronous exception (trap)

• Q4: True _ False _ DMA is more efficient than
programmed I/O for transferring large volumes of data

• Q5: In a I/O subsystem the queuing time for a request is
10ms and the request’s service time is 40ms. Then the total
response time of the request is ___ ms

Quiz 12.2: I/O
X

X

X

X

50

12.4210/14/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Summary
• Dual-Mode

– Kernel/User distinction: User restricted
– UserKernel: System calls, Traps, or Interrupts

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns: block, char, net devices
– Different Access Timing: Non-/Blocking, Asynchronous

• I/O Controllers: Hardware that controls actual device
– CPU accesses thru I/O insts, ld/st to special phy memory
– Report results thru interrupts or a status register polling

• Device Driver: Device-specific code in kernel

