
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 11

Page Allocation and Replacement

October 9, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

11.210/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Post Project 1 Class Format

• Mini quizzes after each topic
– Not graded!
– Simple True/False
– Immediate feedback for you (and me)

• Separate from pop quizzes

11.310/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Associative caches have fewer
compulsory misses than direct mapped caches

• Q2: True _ False _ Two-way set associative caches can
cache two addresses with same cache index

• Q3: True _ False _ With write-through caches, a read miss
can result in a write

• Q5: True _ False _ A TLB caches translations to virtual
addresses

Quiz 11.1: Caches & TLBs

11.410/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Associative caches have fewer
compulsory misses than direct mapped caches

• Q2: True _ False _ Two-way set associative caches can
cache two addresses with same cache index

• Q3: True _ False _ With write-through caches, a read miss
can result in a write

• Q5: True _ False _ A TLB caches translations to virtual
addresses

Quiz 11.1: Caches & TLBs
X

X

X

X

Page 2

11.510/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Physical
Address:

OffsetPhysical
Page #

4KB

Review: Two-level page table
10 bits 10 bits 12 bits

Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

4 bytes

11.610/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86_64: Four-level page table!
9 bits 9 bits 12 bits

48-bit Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

11.710/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

7 bits 9 bits 12 bits64bit Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits
Virtual
P5 index

Virtual
P6 index

9 bits 9 bits

No!

Too slow
Too many almost-empty tables

IA64: 64bit addresses: Six-level page table?!?

11.810/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Idea: index the page table by physical pages instead of VM

IA64: Inverse Page Table (IPT)

VMpage0, proc0

VMpage2, proc0

VMpage1, proc0

VMpage3, proc0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical memory
in 4kB pages

Page numbers in red

pid 0 VMpage0
pid 1 …
pid 0 VMpage2
pid 0 VMpage1
xx free
pid 2 …
pid 1 …
pid 0 VMpage3

Inverse Page Table

VMpage0
VMpage1
VMpage2
VMpage3 0x0

0x1
0x2
0x3
0x4
0x5
0x6
0x7

Process id 0
Virtual memory

Page 3

11.910/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Need an associative map from VM page to IPT address:
Use a hash map.

IPT address translation

pid 0 VMpage0
pid 1
pid 0 VMpage1
pid 0 VMpage2
xx free
pid 2
pid 1
pid 0 VMpage3

Inverse Page Table

VMpage2 (52b) Offset (12b)

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7

Process 0 virtual address
0x3 Offset (12b)

Hash VM page #

VMpage0, proc0

VMpage2, proc0

VMpage1, proc0

VMpage3, proc0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical address

11.1010/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Note: can’t share memory: only one hashed entry will
match.

IPT address translation

pid 0 VMpage0
pid 1
pid 0 VMpage1
pid 0 VMpage2
xx free
pid 2
pid 1
pid 0 VMpage3

Inverse Page Table

VMpage2 (52b) Offset (12b)

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7

Process 0 address

VMpage4 (52b) Offset (12b)

Process 1 address

11.1110/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Pros:
• Page table size naturally linked to physical memory size.
• Only two memory accesses (most of the time).
• Shouldn’t need to page out the page table.
• Hash function can be very fast if implemented in hardware.
Cons:
• Can’t (easily) share pages.
• Have to manage collisions, e.g. by chaining, which adds

memory accesses.

IA64: Inverse Page Table (IPT)

11.1210/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Paging does not suffer from external
fragmentation

• Q2: True _ False _ The segment offset can be larger than
the segment size

• Q3: True _ False _ Paging: to compute the physical
address, add physical page # and offset

• Q4: True _ False _ Uni-programming doesn’t provide
address protection

• Q5: True _ False _ Virtual address space is always larger
than physical address space

• Q6: True _ False _ Inverted page tables keeps fewer
entries than multi-level page tables

Quiz 11.2: Address Translation

Page 4

11.1310/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Paging does not suffer from external
fragmentation

• Q2: True _ False _ The segment offset can be larger than
the segment size

• Q3: True _ False _ Paging: to compute the physical
address, add physical page # and offset

• Q4: True _ False _ Uni-programming doesn’t provide
address protection

• Q5: True _ False _ Virtual address space is always larger
than physical address space

• Q6: True _ False _ Inverted page tables keeps fewer
entries than multi-level page tables

Quiz 11.2: Address Translation
X

X

X

X

X

X

11.1410/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Review: Translation Lookaside Buffer

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

11.1510/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Review: Cache

Offset

Physical
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag

11.1610/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Goals for Today
• Page Replacement Policies

– FIFO
– LRU
– Clock Algorithm

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Page 5

11.1710/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Modern programs require a lot of physical memory
– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10% of their

code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as cache for disk/SSD

Demand Paging

Core

Core
Secondary

Storage
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage
(SSD)

Caching

Caching

11.1810/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Demand Paging is Caching
• Since Demand Paging is Caching, we must ask:

Question Choice

What is the block size? 1 page

What is the organization of this
cache (i.e., direct-mapped, set-
associative, fully-associative)?

Fully-associative: arbitrary
virtualphysical mapping

How do we find a page in the
cache?

First check TLB, then traverse page
tables

What is page replacement policy?
(i.e., LRU, Random, …)

Requires more explanation… (kinda
LRU)

What happens on a miss? Go to lower level to fill a miss (i.e.,
disk)

What happens on a write? (i.e.,
write-through, write-back)

Definitely write-back. Need a “dirty”
bit (D)!

11.1910/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find it on

disk when necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another

process from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms

11.2010/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Steps in Handling a Page Fault

Page 6

11.2110/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Demand Paging Example
• Since Demand Paging like caching, can compute average

access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = (1 – p) x 200ns + p x 8 ms
= (1 – p) x 200ns + p x 8,000,000ns

= 200ns + p x 7,999,800ns
• If one access out of 1,000 causes a page fault, then EAT =

8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– EAT < 200ns x 1.1  p < 2.5 x 10-6

– This is about 1 page fault in 400,000 !
11.2210/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

What Factors Lead to Misses?
• Compulsory Misses:

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option: If multiple processes in memory: adjust percentage

of memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, since it
is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out prematurely

because of the replacement policy
– How to fix? Better replacement policy

11.2310/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page. Be fair – let every page live in memory

for same amount of time.
– Bad, because throws out heavily used pages instead of

infrequently used pages
• MIN (Minimum):

– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Unpredictable

11.2410/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Replacement Policies (Con’t)
• FIFO:

– Replace page that has been in for the longest time.
– Be “fair” to pages and give them equal time.
– Bad idea because page use is not even. We want to give more

time to heavily used pages.
• How to implement FIFO? It’s a queue (can use a linked list)

– Oldest page is at head
– When a page is brought in, add it to tail.
– Eject head if list longer than capacity

Page 6 Page 7 Page 1 Page 2Head(Oldest)

Tail(Newest)

Page 7

11.2510/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while,

unlikely to be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list?

– LRU page is at head
– When a page is used for the first time, add it to tail.
– Eject head if list longer than capacity

Page 6 Page 1 Page 2Head(LRU)

Tail (MRU)

Page 7

11.2610/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while,

unlikely to be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• Different if we access a page that is already loaded:

– LRU page is at head
– When a page is used again, remove from list, add it to tail.
– Eject head if list longer than capacity

Page 6 Page 2 Page 1 Page 2Head(LRU)

Tail (MRU)

11.2710/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while,

unlikely to be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• Different if we access a page that is already loaded:

– LRU page is at head
– When a page is used again, remove from list, add it to tail.
– Eject head if list longer than capacity

• Problems with this scheme for paging?
– Updates are happening on page use, not just swapping
– List structure requires extra pointers c.f. FIFO, more updates

• In practice, people approximate LRU (more later)

Page 6 Page 1 Page 2Head(LRU)

Tail (MRU)

11.2810/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:

– A B C A B D A D B C B
• Consider FIFO Page replacement:

– FIFO: 7 faults.
– When referencing D, replacing A is bad choice, since need A

again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

Page 8

11.2910/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Suppose we have the same reference stream:
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults
– Look for page not referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref:
Page:

11.3010/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref:
Page:

11.3110/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the miss rate
goes down

– Does this always happen?
– Seems like it should, right?

• No: Belady’s anomaly
– Certain replacement algorithms (FIFO) don’t have this obvious

property!
11.3210/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO! (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with X pages

are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBAEBADCBA E

3
2
1

Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Page:

Page 9

11.3310/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Administrivia
• Project #1:

• Design doc (submit proj1‐final‐design) and group evals
(Google Docs form) due today at 11:59PM

» Group evals are anonymous to your group

• Midterm #1 is Monday Oct 21 5:30-7pm in
145 Dwinelle (A-L) and 2060 Valley LSB (M-Z)

– Closed book, double-sided handwritten page of notes,
no calculators, smartphones, Google glass etc.

– Covers lectures #1-13 (Disks/SSDs, Filesystems), readings,
handouts, and projects 1 and 2

– Review session 390 Hearst Mining, Fri October 18, 5-7 PM

• Class feedback is always welcome!

5min Break

11.3510/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Implementing LRU & Second Chance
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Second Chance Algorithm:
– Approximate LRU

» Replace an old page, not the oldest page
– FIFO with “use” bit

• Details
– A “use” bit per physical page

» set when page accessed
– On page fault check page at head of queue

» If use bit=1  clear bit, and move page to tail (give the page
second chance!)

» If use bit=0  replace page
– Moving pages to tail still complex

11.3610/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Second Chance Illustration

• Max page table size 4
– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives

B u:0

first loaded
page

A u:1 D u:0 C u:0

last loaded
page

Page 10

11.3710/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Second Chance Illustration

• Max page table size 4
– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives
– Page F arrives

B u:0

first loaded
page

A u:1 D u:0 C u:0

last loaded
page

11.3810/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Second Chance Illustration

• Max page table size 4
– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives
– Page F arrives

A u:1

first loaded
page

D u:0 C u:0 F u:0

last loaded
page

11.3910/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Second Chance Illustration

• Max page table size 4
– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives
– Page F arrives
– Access page D

A u:1

first loaded
page

D u:1 C u:0 F u:0

last loaded
page

11.4010/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Second Chance Illustration

• Max page table size 4
– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives
– Page F arrives
– Access page D
– Page E arrives

A u:1

first loaded
page

D u:1 C u:0 F u:0

last loaded
page

Page 11

11.4110/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Second Chance Illustration

• Max page table size 4
– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives
– Page F arrives
– Access page D
– Page E arrives

D u:1

first loaded
page

C u:0 F u:0 A u:0

last loaded
page

11.4210/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Second Chance Illustration

• Max page table size 4
– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives
– Page F arrives
– Access page D
– Page E arrives

C u:0

first loaded
page

F u:0 A u:0 D u:0

last loaded
page

E u:0

11.4310/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Clock Algorithm
• Clock Algorithm: more efficient implementation of second

chance algorithm
– Arrange physical pages in circle with single clock hand

• Details:
– On page fault:

» Check use bit: 1used recently; clear and leave it alone
0selected candidate for replacement

» Advance clock hand (not real time)
– Will always find a page or loop forever?

11.4410/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Clock Replacement Illustration

• Max page table size 4

• Invariant: point at oldest page

– Page B arrives

B
u:0

Page 12

11.4510/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Clock Replacement Illustration

• Max page table size 4

• Invariant: point at oldest page

– Page B arrives
– Page A arrives
– Access page A B

u:0
A
u:0

11.4610/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Clock Replacement Illustration

• Max page table size 4

• Invariant: point at oldest page

– Page B arrives
– Page A arrives
– Access page A
– Page D arrives

B
u:0

A
u:1

D
u:0

11.4710/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Clock Replacement Illustration

• Max page table size 4

• Invariant: point at oldest page

– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives

B
u:0

A
u:1

D
u:0

C
u:0

11.4810/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

B
u:0

Clock Replacement Illustration

• Max page table size 4

• Invariant: point at oldest page

– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives
– Page F arrives
– Access page D

F u:0

A
u:1

D
u:0

C
u:0

Page 13

11.4910/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

C
u:0
E
u:0

• Max page table size 4

• Invariant: point at oldest page

– Page B arrives
– Page A arrives
– Access page A
– Page D arrives
– Page C arrives
– Page F arrives
– Access page D
– Page E arrives

A
u:1
A
u:0

D
u:1
D
u:0

Clock Replacement Illustration

F u:0

11.5010/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Clock Algorithm: Discussion

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly

• What if hand is moving quickly?
– Lots of page faults and/or lots of reference bits set

11.5110/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without page
being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give dirty
pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

11.5410/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Demand paging incurs conflict misses
• Q2: True _ False _ LRU can never achieve higher hit rate

than MIN
• Q3: True _ False _ The LRU miss rate may increase as

the cache size increases
• Q4: True _ False _ The Clock algorithm is a simpler

implementation of the Second Chance algorithm
• Q5: Assume a cache with 100 pages. The number of pages

that the Second Chance algorithm may need to check
before finding a page to evict is at most ___

Quiz 11.3: Demand Paging

Page 14

11.5510/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

• Q1: True _ False _ Demand paging incurs conflict misses
• Q2: True _ False _ LRU can never achieve higher hit rate

than MIN
• Q3: True _ False _ The LRU miss rate may increase as

the cache size increases
• Q4: True _ False _ The Clock algorithm is a simpler

implementation of the Second Chance algorithm
• Q5: Assume a cache with 100 pages. The number of pages

that the Second Chance algorithm may need to check
before finding a page to evict is at most ___

Quiz 11.3: Demand Paging
X

X

X

X

101

11.5610/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Summary (1/2)
• Demand Paging:

– Treat memory as cache on disk
– Cache miss  find free page, get page from disk

• Transparent Level of Indirection
– User program is unaware of activities of OS behind

scenes
– Data can be moved without affecting application

correctness

• Replacement policies
– FIFO: Place pages on queue, replace page at head

» Fair but can eject in-use pages, suffers from Belady’s
anomaly

– MIN: Replace page that will be used farthest in future
» Benchmark for comparisons, can’t implement in practice

– LRU: Replace page used farthest in past
» For efficiency, use approximation

11.5710/9/2013 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Summary (2/2)

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

