CS162
Operating Systems and
Systems Programming

Lecture 7

Language Support for Concurrent
Programming, Deadlocks

September 25, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

Recap: Readers/Writers Problem

» Motivation: Consider a shared database
— Two classes of users:
» Readers — never modify database
» Writers — read and modify database
— Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.3

Page 1

Goals for Today

* Recap: Readers/Writers

» Language Support for Synchronization

+ Discussion of Resource Contention and Deadlocks
— Conditions for its occurrence
— Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, lon Stoica, Doug Tygar, and David Wagner.

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.2

Recap: Readers/Writers Solution

» Correctness Constraints:
— Readers can access database when no writers
— Writers can access database when no readers or writers
— Only one thread manipulates state variables at a time
» Basic structure of a solution:
—Reader()
Wait until no writers

Access database o }
Check out — wake up a waiting writer

—WriterQ)
Wait until no active readers or writers
Access database
Check out — wake up waiting readers or writer
— State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Condition okToWrite = NIL
9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.4

Code for a Reader

Reader() {
// First check self into system
lock.Acquire(Q);

while ((AW + W) > 0) { // Is it safe to read?
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var
WR--3; // No longer waiting

}

AR++;

lock.release();

// Perform actual read-only access
AccessDatabase(ReadOnly);

// Now, check out of system

lock.Acquire(Q);

AR--; // No longer active

if (AR == 0 && WW > 0) // No other active readers
okToWrite.signal(Q); // Wake up one writer

lock.Release();

}

9/25/13 Anthony D. Joseph and John Canny CS162

// Now we are active!

©UCB Fall 2013 Lec7.5

C-Language Support for Synchronization

+ C language: All locking/unlocking is explicit: you need to
check every possible exit path from a critical section.

int Rtn() {
lock.acquire();

if (error) {
lock.release();
return errReturnCode;

Iock.release();
return OK;

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.7

Page 2

Code for a Writer

Writer(Q {
// First check self into system
lock.Acquire();

while ((AW + AR) > 0) {// Is it safe to write?

WW++; // No. Active users exist
okToWrite.wait(&lock); // Sleep on cond var
) WW--; // No longer waiting
AW++; // Now we are active!

Iock:release();

// Perform actual read/write access
AccessDatabase(ReadWrite);

// Now, check out of system

lock.Acquire();

AW--; // No longer active

if (w > 0){ // Give priority to writers
okToWrite.signal(); // Wake up one writer

}else if WR > 0) { // Otherwise, wake reader
okToRead.broadcast(); 7/ Wake all readers

ock.Release();

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.6

C++ Language Support for Synchronization

» Languages with exceptions like C++

— Languages that support exceptions are more challenging:
exceptions create many new exit paths from the critical section.

— Consider:
void Rtn() {
lock.acquire();
BoFoo();
Iock.release();
void DoFoo() {

if (exception) throw errException;

¥
— Notice that an exception in DoFoo() will exit without releasing
the lock
9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.8

C++ Language Support tor Synchronization
(cont'd)
» Must catch all exceptions in critical sections

— Catch exceptions, release lock, and re-throw exception:
void Rtn() {
lock.acquire();
try {

BoFoo();

} Eétch (...) { // really three dots!
// catch all exceptions
// release lock

// re-throw unknown exception

lock.release();
throw;

lock.release();
}
void DoFoo() {
if (exception) throw errException;

}

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.9

Java Language Support for Synchronization

Java supports both low-level and high-level synchronization:
* Low-level:
— Lock class: a lock, with methods:
» lock.lock()
» lock.unlock()
— Condition: a condition variable associated with a lock, methods:
» condvar.await()
» condvar.signal()

» High-level: every object has an implicit lock and condition var
— synchronized keyword, applies to methods or blocks
— Implicit condition variable methods:
» wait()
» notify() and notifyAll()

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.11

Page 3

C++ Language Support tor Synchronization
(cont’'d)
« Alternative (Recommended by Stroustrup): Use the lock class
destructor to release the lock.

« Set it on entry to critical section contained in a { } block, gets
automatically destroyed (& released) on block exit.
» Exceptions will unwind the stack, call destructor, free the lock

class lock {
mutex &m_; ces
public: {

mutex m;

lock(mutex &m) : m_(m) { lock mylock(m);
m.acquire(); .
} ce
~lock() { ... // no explicit unlock
m_.release(); }
¥ Critical Section
B
9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.10

Java Language Low-level Synchronization

public class SynchronizedQueue {
private Lock lock = new ReentrantLock();
private Condition cv = lock.newCondition();
private LinkedList<Integer> q = new LinkedList<Integer>();

public void enqueue(int item) {
try {
lock.lock();
g.add(item);
cv.signal();

} finally {
lock.unlock();
9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.12

Java Language Low-level Synchronization

public synchronized int dequeue() {
int retval = 0;
try {
lock.lock();
while (qg.size() == 0) {
cv.await();
}
retval = q.removeFirst();
} finally {
lock.unlock();
¥

return retval;

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.13

Concurrency Bugs (Lu et al. 2008)

Most concurrency bugs (98%) are either

1. Atomicity violations (not protecting shared resources)
2. Order violations

3. Deadlocks

Type 1. problems are caused by under-protecting shared

resources, type 3. often caused by over-protection.

Fixes to type 3. bugs often create type 1. bugs. ®

Good news:

4. Most non-deadlock bugs involve only one variable.

5. Most (97%) of deadlocks involve two threads which
access at most two resources.

Not-so-good news: concurrency bugs seem to be a small
fraction of all reported bugs, but consume a large fraction of
debugging time (days per bug instead of hours).

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.15

Page 4

Java High-Level Synchronization

KISS Principle:
KEEP IT SIMPLE, STUDENT!

Explicit locks can help efficiency, but are difficult to analyze.

They also make code more brittle and hard to maintain —
constraints and invariants must hold in original code, but
also in all modified versions.

Q: What is the typical lifetime of a piece of code?
A: At least a decade longer than any of the original
developers anticipated!

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.14

Java Language High-level Synchronization

» Every object in Java has an implicit lock associated with it.

* The synchronized keyword wraps this lock around a method
or a block:

public class TheBank {
public synchronized Withdraw(..) {
... // the implicit lock (on “this”) is held in here
}

}
OR

synchronized (that) { // Specify which object to lock
. // the implicit lock on “that” is held in here
}

The JVM takes care of releasing the lock on normal and
abnormal exits from the method or block.

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.16

Java Language High-level Synchronization

+ In addition to an implicit lock, every object has a single
implicit condition variable associated with it
— How to wait inside a synchronization method of block:
» void waitQ);
» void wait(long timeout); // Wait for timeout (msecs)
» void wait(long timeout, int nanoseconds); //variant
— How to signal in a synchronized method or block:
» void notify(Q; // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone
— Condition variables can wait for a bounded length of time. This
is useful for handling exception cases:

tl = time.now();
while (1ATMRequest()) {
wait (CHECKPERIOD);
t2 = time.new();
if (t2 — t1 > LONG_TIME) checkMachine();

— Not all Java VMs equivalent!
» Different scheduling policies, not necessarily preemptive!

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.17

Scala Language: Actors

+ Scala is a state-of-the-art language which runs Scala or Java
code on a Java Virtual Machine.

« Scala supports Actors, a higher-level abstraction for
concurrent programming.

. Sofar: threadsig § §. % g %

Execute methods

that modify state \
¥ N "
Objects m1(‘)(m1() m3() m6() m8()
. i mé4()
with state: |ma| [m2g| [msp| [mz0| |meg
9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.19

Page 5

Java Language High-level Synchronization

public class SynchronizedQueue {
public LinkedList<Integer> q = new LinkedList<Integer>();

public synchronized void enqueue (int item) {
q.add(item);

notify();
}
public synchronized int dequeue () {
try {
while (q.size() == 0) {
wait();
}

return q.removeFirst();
} catch (InterruptedException e) {
return 9;

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.18

Scala Language: Actors
* Actors combine state, methods, and a single thread.
g m1() g m1() % m3() % mé() § m8()
mA4()
m2() m2() m5() m7() m9()
» Actor state is not shared, actors interact by sending and
receiving messages.

» Each actor has a single, synchronized message queue,
which is part of its implementation.

+ Actor code typically comprises a while loop which waits for
inbound messages, and dispatches to a message handler.

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.20

Scala Actor Bank Account Example

val b = actor { /I b is an actor representing a bank account
var balance = 0.0
loop {
react { /I dispatch on the message type
case ("deposit", amount:Double) => balance += amount
case ("withdraw", amount:Double) => balance -= amount

case ("interest", rate:Double) => balance += balance*rate
case "balance" => println("balance="+balance)
¥
¥
¥

var grow = true

val g = actor { /I g is an actor that periodically adds interest
while (grow) {
b ! ("interest", ©.05) //send an interest update message to b
Thread.sleep(3000)
¥
¥

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.21

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.22

Resources
* Resources — passive entities needed by threads to do their

work
— CPU time, disk space, memory *:
« Two types of resources: ' =
— Preemptable — can take it away .
<,

» CPU, Embedded security chip
— Non-preemptable — must leave it with the thread
» Disk space, printer, chunk of virtual address space
» Critical section
* Resources may require exclusive access or may be sharable
— Read-only files are typically sharable
— Printers are not sharable during time of printing

* One of the major tasks of an operating system is to manage
resources

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.23

Starvation vs Deadlock

 Starvation vs. Deadlock
— Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources constantly
in use by high-priority threads
— Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

Threa

Owned, A V\garlt
By
Res 1 Res 2
. Owned
Wait Threa By
For B

— Deadlock = Starvation but not vice versa
» Starvation can end (but doesn’t have to)

» Deadlock can’t end without external intervention
9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.24

Conditions for Deadlock @
+ Deadlock not always deterministic — Example 2 mutexes:

x=1, y=1 Thread A Thread B Deadlock
x.PO; y-PO;
y-PO: x.PO;
y.VO; x.VO:
x.VO; y-VO;

— Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)

» Deadlocks occur with multiple resources

— Means you can’t decompose the problem

— Can't solve deadlock for each resource independently
+ Example: System with 2 disk drives and two threads

— Each thread needs 2 disk drives to function

— Each thread gets one disk and waits for another one

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.25

Routing Example @
+ Circular dependency (Deadlock!)
— Packets trying to reach a destination two hops away
— Try to reserve the path to destination — grab first link, then...
— Important problem to multiprocessor networks
* Ho do you prevent deadlock?
— (Answer later)

0 ——=0O

4

!

O a

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.28

Page 7

Bridge Crossing Example

» Each segment of road can be viewed as a resource
— Car must own the segment under them
— Must acquire segment that they are moving into

» For bridge: must acquire both halves
— Traffic only in one direction at a time

— Problem occurs when two cars in opposite directions on bridge:
each acquires one segment and needs next

« If a deadlock occurs, it can be resolved if one car backs up
(preempt resources and rollback)

— Several cars may have to be backed up
+ Starvation is possible

— East-going traffic really fast = no one goes west

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.26

Dining Philosopher Problem

O

Five chopsticks/Five philosopher (really cheap restaurant)
— Free for all: Philosopher will grab any one they can
— Need two chopsticks to eat
What if all grab at same time?
— Deadlock!
How to fix deadlock?
— Make one of them give up a chopstick (Hah!)
— Eventually everyone will get chance to eat
How to prevent deadlock?

— (Answer later)
/25/13

9 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.29

Four requirements for Deadlock @ Resource-Allocation Graph @
* Mutual exclusion + System Model
— Only one thread at a time can use a resource -
y . Asetof Threads T, T,, . . ., T, BT
* Hold and wait — Resource types Ry, Ry, . . ., R,
— Thread holding at least one resource is waiting to acquire CPU cycles, memory space, I/O devices @ @
addltlonallresources held by other threads — Each resource type R, has W, instances. -
: NOFEJreemptlon | d onl untarily by the thread holdi — Each thread utilizes a resource as follows: El °
— Resources are released only voluntarily by the thread holding .
the resource, after thread is finished with it > Request() ./ Use() 7 Release() Ry R
« Circular wait . Resqurce—,.oxlllocat'lon Graph: 2
— There exists a set {T, ..., T,} of waiting threads — Vs partitioned into two types: _
» T, is waiting for a resource that is held by T, » T={Ty, Ty, ..., Ty}, the set threads in the system.
» T, is waiting for a resource that is held by T, » R={Ry, Ry, ..., Ry}, the set of resource types in system
» ... —request edge — directed edge T;— R,
» T, is waiting for a resource that is held by T, — assignment edge — directed edge Rj ST,
9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.30 9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.31
Resource Allocation Graph Examples @ Administrivia
* Recall:
—request edge — directed edge T;— R,
—assignment edge — directed edge R; — T; * Reminder: Nachos Project | design document due
R R tomorrow (9/26) at 11:59PM
1 2
“ “ R /@ — No slip days allowed
L
AN .
G G G \ * Please post non-anonymously to Piazza
T, T, — No need to be anonymous ©
Y '}
ERE S
° o
.)
R, £ \‘
Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but
No Deadlock
9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.32 9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 7.33

Page 8

5min Break

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec7.34

Deadlock Detection Algorithm
* Only one of each type of resource = look for loops
* More General Deadlock Detection Algorithm

— Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources]: Current free resources each type
[Request,]: Current requests from thread X
[Alloc,]: Current resources held by thread X

— See if tasks can eventually terminate on their own

")

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {

done = true
Foreach node in UNFINISHED {
if ([Request 4] <= [Avail]) {
remove node from UNFINISHED
[Avail] = [Avail] + [AllocC,y]
done = false

3} u}nti 1(done)

— Nodes left in UNFINISHED = deadlocked

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec7.36

Page 9

Methods for Handling Deadlocks @

* Allow system to enter deadlock and then recover

— Requires deadlock detection algorithm (Java JMX
findDeadlockedThreads(), try also jvisualvm)

— Some technique for forcibly preempting resources and/or
terminating tasks

» Deadlock prevention: ensure that system will never enter
a deadlock

— Need to monitor all lock acquisitions
— Selectively deny those that might lead to deadlock

* Ignore the problem and pretend that deadlocks never
occur in the system

— Used by most operating systems, including UNIX

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.35
Deadlock Detection Algorithm
Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy, = [0,1]

[Avail] = [0,0]
UNFINISHED = {T1,T2,

/

T3,T4} \
do { T, T,
done = true

remove nodrém%rom UNFINSHED
[Avail] = [Avail] + [Alloc,]
done = false

3
3} :ltnti 1(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 7.37

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request,,] = [0,0]; Alloc:, = [1,0]
[Request.;] = [0,1]; Alloc; = [1,0]
[Request;,] = [0,0]; Alloc;, = [0,1]

[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}

do {
done = true
Foreach node

in UNFINISHED

oo BEANCUR R g g

U UN \] U
Avail] = [Avail] + [Alloc]
one = false

3

;o
} until(done)
9/25/13

Anthony D. Joseph and John Canny CS162

©UCB Fall 2013

Lec7.38

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request;,] = [0,0]; Alloc;, = [1,0]
[Request.;] = [0,1]; Alloc; = [1,0]
[Request.,] = [0,0]; Alloc,, = [0,1]

[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}

do {
done = true
Foreach node in UNFINISHED {

R PR i
\ SH

0
[Avail] [Avail] + [Alloc,,]
done = false

}
} 3nti 1(done)

9/25/13 Anthony D. Joseph and John Canny CS162

©UCB Fall 2013

Lec7.40

Page 10

Deadlock Detection Algorithm

Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0]
[Request;;] = [0,1]; Allocy; = [1,0]
[Request,] = [0,0]; Allocy, = [0,1]

[Avail] = [0,0]
UNFINISHED = {T1,T2,T3,T4}

qu nod - d
remove_node %‘rc_)m UNF INSHED
Avail] = [Avail] + [Alloc, gl
one = false

;o
3} until(done)

T

/

R,

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.39
Deadlock Detection Algorithm
Example

[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy, = [0,1] —
[Avail] = [0,0] o
UNFINISHED = {T1,T3,T4} \
do { T, Ty
done = true
Foreach node in UNFINISHED { S

iT ([Request;,] <= [Avail])

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny Cs162

©UCB Fall 2013

Lec7.41

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request,,] = [0,0]; Alloc:, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] i
[Request;,] = [0,0]; Alloc;, = [0,1]
[Avail] = [1,0] E
UNFINISHED = {T1,T3,T4}
do {

done = true
Foreach node in UNFINISHED
if ([RequestTZ] <= [Avail]) {
de from UNFINSHED

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec7.42

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request;,] = [0,0]; Alloc;, = [1,0] R
[Request;;] = [0,1]; Alloc,; = [1,0] 1
[Request.,] = [0,0]; Alloc,, = [0,1] .
[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}
do {
done true
no == <
remove nodé from UNFINSHED
[Avail] = [Avail] + [Alloc,] R
done = false 2
}

® @ ©

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec7.44

Page 11

Deadlock Detection Algorithm

Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;g] = [0,1]; Alloc; = [1,0] i
[Request,] = [0,0]; Allocy, = [0,1]
[Avail] = [1.,0] '\
UNFINISHED = {T1,T3,T4} \
do { T, T,

done = true
Foreach node in UNFINISHED
if ([RequengZ] <= [Avail]) {
no

remov from UNFINSHED ~
A 17 + ALl =
i 2

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.43
Deadlock Detection Algorithm
Example

[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,0] ‘\
UNFINISHED = {T1,T3,T4} \
do { Ty Ty
done = true
Foreach node in UNF S
\ ~
Avail Avail 1
3 (Ij:olez]falls:eval T ocral R,

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 7.45

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request,,] = [0,0]; Alloc:, = [1,0]
[Request.;] = [0,1]; Alloc; = [1,0]
[Request;,] = [0,0]; Alloc;, = [0,1]

[Avail] = [1,0]
UNFINISHED = {T1,T3,T4}

do {

done true

remove nodréod?frgm_ UNFINSHED
[Avail] = [Avail] + [Alloc,qg]
done = false

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162

Deadlock Detection Algorithm

Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0]
[Request;;] = [0,1]; Allocy; = [1,0]
[Request,] = [0,0]; Allocy, = [0,1]

©UCB Fall 2013

Lec7.46

[Avail] = [1.,0]
UNFINISHED = {T1,T3,T4}

do {

done = true
Foreach node

U
[Avail] = [Avail] + [Alloc,]
done = false

;o
} until(done)

T

,.

R,

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request;,] = [0,0]; Alloc;, = [1,0]
[Request.;] = [0,1]; Alloc; = [1,0]
[Request.,] = [0,0]; Alloc,, = [0,1]

[Avail] = [1,0]
UNFINISHED = {T1,T3}

do {
done = true
Foreach node in UNFINISHED {

;o
} until(done)

9/25/13

Anthony D. Joseph and John Canny

CS162

©

©UCB Fall 2013

Lec7.48

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec 7.47
Deadlock Detection Algorithm
Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy, = [0,1]
[Avail] = [1,1] ‘\

UNFINISHED = {T1,T3}

do {

done = true

Foreach node in UNFINISHED {
ifT ([Request,,] <= [Avail]) {

remove node from UNFIN

;o
} until(done)

9/25/13

Anthony D. Joseph and John Canny

SHED

B) e

CS162

T

o/

©UCB Fall 2013

Lec 7.49

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request,,] = [0,0]; Alloc:, = [1,0] 5
[Request;;] [0,1]; Allocy; = [1,0] i

[Request,,] [0,0]; Allocy, [0,1]
[Avail] = [1,1] E
UNFINISHED = {T1,T3}

do { G

done = true
Foreach node in UNFINISHED
it ([Request;,] <= [Avail]) { B
e node from UNFINSHED
17 = JAvail] + JAlloc,, R
2

remo
A

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 7.50

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request;,] = [0,0]; Alloc;, = [1,0] R
[Request;;] = [0,1]; Alloc,; = [1,0] i
[Request.,] = [0,0]; Alloc,, = [0,1] .

[Avail] = [1,1]

UNFINISHED = {T1,T3}

do { T
done true

remove nodé from UNFINSHED

[Avail] = [Avail] + [Alloc, 4]

done = false R,

}

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec7.52

Page 13

Deadlock Detection Algorithm

Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;g] = [0,1]; Alloc; = [1,0] i
[Request,] = [0,0]; Allocy, = [0,1]
[Avail] = [1.1] :\
UNFINISHED = {T1,T3} \
do { T, T,

done = true
Foreach node in UNFINISHED
it ([Request;,] <= [Avail]) {
remove node from UNFINSHED C
[Avail] = [Avail] + [Alloc,] R
2

done = false

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.51

Deadlock Detection Algorithm

Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy, = [0,1] o
[Avail] = [1,1] o
UNFINISHED = {T1,T3} \
do { T, Ty
done = true
Foreach node in UNFINISHED { S
"""" ~removt 4 : ()
[Avail] [Avail] + [Alloc.] R
done = false 2
3
;o
} until(done)
9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.53

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request,,] = [0,0]; Alloc:, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] i
[Request;,] = [0,0]; Allocy =

[Avail] = [1,1]
UNFINISHED = {T3}

do { G

done = true

it ([Request;,] <= [Avail]) {

[0,1] II!I

Foreach node in UNFINISHED B

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec7.54

Deadlock Detection Algorithm

Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;g] = [0,1]; Alloc; = [1,0] i
[Request,] = [0,0]; Allocy, = [0,1]

[Avail] = [1,2] ‘\

UNFINISHED = {T3}

®

done = true

Foreach node in UNFINISHED
if ([Request;,] <= [Avail]) { O
de Fi D C

rem m UNFINSHE

R,

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013

Lec7.55

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request;,] = [0,0]; Alloc;, = [1,0] R
[Request;;] = [0,1]; Alloc,; = [1,0] 1
[Request.,] = [0,0]; Alloc,, = [0,1]
[Avail] = [1,2]
UNFINISHED = {T3}
®
done = true
Foreach node in UNFINISHED {
iT ([Request;] <= [Avail]) {
remove node from UNFINSHED
+ JAlloc R
2

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 7.56

Deadlock Detection Algorithm

Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy, = [0,1] @
[Avail] = [1,2] ‘\

UNFINISHED = {T3}

®

done true

.
remove node from UNFINSHED C
[Avail] = [Avail] + [Alloc,] R
done = false 2

}

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013

Lec7.57

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request,,] = [0,0]; Alloc:, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] i
[Request;,] = [0,0]; Alloc;, = [0,1]

[Avail] = [1,2]
UNFINISHED = {T3}

do {

done = true
Foreach node
- -

n UNFINISHED

538!

U UN \] U
[Avail] = [Avail] + [Alloc.;]
done = false

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.58

Deadlock Detection Algorithm

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request;,] = [0,0]; Alloc;, = [1,0]
[Request.;] = [0,1]; Alloc; = [1,0]
[Request.,] = [0,0]; Alloc,, = [0,1]

[Avail] = [2,2]
UNFINISHED = {3}

do {
done = true
Foreach node in UNFINISHED {
iT ([Request ;] <= [Avail]) {
remove node from UNFINSHED

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 7.60

Page 15

Deadlock Detection Algorithm

Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] 5
[Request;g] = [0,1]; Alloc; = [1,0] i
[Request,] = [0,0]; Allocy, = [0,1] .
[Avail] = [1,2] o
UNFINISHED = {} \
o0 ¢ @
done = true
Foreach node in UNFINISHED
if ([Request;,] <= [Avail]) { :
done = f;lse ™ R,

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.59
Deadlock Detection Algorithm
Example
[Request,] = [1,0]; Allocy, = [0,1]
[Request;,] = [0,0]; Allocy, = [1,0] R
[Request;;] = [0,1]; Allocy; = [1,0] 1
[Request,,] = [0,0]; Allocy, = [0,1]

[Avail] = [2.2] .

UNFINISHED = {3}

®
done = true
Foreach node in UNFINISHED {
if ([Request;;] <= [Avail]) { e
remove node from UNFINSHED C

R,

;o
} until(done)

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013

Lec7.61

Deadlock Detection Algorithm

o

Example
[Request;,] = [1,0]; Alloc;; = [0,1]
[Request,,] = [0,0]; Alloc:, = [1,0]
[Request.;] = [0,1]; Alloc; = [1,0]
[Request;,] = [0,0]; Alloc;, = [0,1]

[Avail] = [2,2]
UNFINISHED = {}

U
remove node from UNFINSHED
gAvall] = [Avail] + [Alloc;]
one = false

} .
} until(done)

DONE!

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.62

Techniques for Preventing Deadlock
(cont’'d)
* Make all threads request everything they’ll need at the
beginning
— Problem: Predicting future is hard, tend to over-estimate
resources
— Example:

» Don’t leave home until we know no one is using any intersection
between here and where you want to go!

» Force all threads to request resources in a particular order
preventing any cyclic use of resources
— Thus, preventing deadlock
— Example (x.P, y.P, z.P,...)
» Make tasks request disk, then memory, then...

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 7.64

Page 16

Techniques for Preventing Deadlock

* Infinite resources

— Include enough resources so that no one ever runs out of
resources. Doesn’t have to be infinite, just large

— Give illusion of infinite resources (e.g. virtual memory)
— Examples:

» Bay bridge with 12,000 lanes. Never wait!

» Infinite disk space (not realistic yet?)

)

* No Sharing of resources (totally independent threads)
— Not very realistic

» Don't allow waiting
— How the phone company avoids deadlock
» Call to your Mom in Toledo, works its way through the phone lines,
but if blocked get busy S|gnal
— Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013

Lec 7.63
Routing Example @
+ Circular dependency (Deadlock!)
— Packets trying to reach a destination two hops away
— Try to reserve the path to destination — grab first link, then ®
— Important problem to multiprocessor networks

» Use dimension ordering: prioritization of requests, X first,
then'Y

S — r
. = o tm
9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec 7.66

Routing Example @
« Circular dependency (Deadlock!)
— Packets trying to reach a destination two hops away
— Try to reserve the path to destination — grab first link, then...
— Important problem to multiprocessor networks

» Use dimension ordering: prioritization of requests, X first,
thenY

o O oo o
O Lo o o
9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.67

Banker’s Algorithm for Preventing
Deadlock
» Toward right idea:
— State maximum resource needs in advance
— Allow particular thread to proceed if:

(available resources - #requested) > max
remaining that might be needed by any thread

» Banker’s algorithm (less conservative):
— Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Keeps system in a “SAFE” state, i.e. there exists a sequence {T;,
T,, ... T} with T, requesting all remaining resources, finishing, then
T, requesting all remaining resources, etc..

— Algorithm allows the sum of maximum resource needs of all
current threads to be greater than total resources

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 7.69

Page 17

Routing Example

+ Circular dependency (Deadlock!) @

» Use dimension ordering: prioritization of requests, X first,
thenY.

* In effect this prioritizes “East-South” and “West-North”
turns when moving clockwise (and West-South and East-
North turns going CCW).

‘D A — D/I O

9/25/13 Anthony D. Joseph and John Canny Cs162

©UCB Fall 2013

Lec7.68

Banker’s Algorithm

+ Technique: pretend each request is granted, then run

deadlock detection algorithm, substitute

([Request,qqe] < [Avail]) > ([MaX,oq4e]-[All0C,44] < [Avail])

[FreeResources]: Current free resources each type
[Alloc,]: Current resources held by thread X
[Max,]: Max resources requested by thread X

[Avail] = [FreeResources]
Add all nodes to UNFINISHED
do {
done = true
Foreach node in UNFINISHED {
i ([MaXpoqe]-[A110C 00]<= [Availl) {
remove node from UNFINISHED
[Avail] = [Avail] + [Alloc 4]
done = false

}
}
} until(done)

9/25/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec7.70

Banker’s Algorithm Example

» Banker’s algorithm with dining philosophers

- “Sﬁfe" (won’t cause deadlock) if when try to grab chopstick
either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

— What if k-handed philosophers? Don’t allow if:
» It's the last one, no one would have k
» It's 2" to last, and no one would have k-1
» It's 3" to last, and no one would have k-2

»

9/25/13 " Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.71

Page 18

Summary: Deadlock

« Starvation vs. Deadlock
— Starvation: thread waits indefinitely
— Deadlock: circular waiting for resources

» Four conditions for deadlocks
— Mutual exclusion
» Only one thread at a time can use a resource
— Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

— No preemption

» Resources are released only voluntarily by the threads
— Circular wait

» 3 set{Ty, ..., T,} of threads with a cyclic waiting pattern

» Deadlock preemption
+ Deadlock prevention (Banker’s algorithm)

9/25/13 Anthony D. Joseph and John Canny Cs162 ©UCB Fall 2013 Lec7.72

