
Page 1

CS162
Operating Systems and
Systems Programming

Lecture 5

Semaphores, Conditional Variables

September 18, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

Lec 5.29/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Goals for Today
• Atomic instruction sequence

• Continue with Synchronization Abstractions
– Semaphores, Monitors and condition variables

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.

Lec 5.39/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Atomic Read-Modify-Write
instructions

• Problems with interrupt-based lock solution:
– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and
would be very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value from memory and write a new

value atomically
– Hardware is responsible for implementing this correctly

» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence

protocol)
– Unlike disabling interrupts, can be used on both

uniprocessors and multiprocessors

Lec 5.49/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Examples of Read-Modify-Write

• test&set (&address) { /* most architectures */
result = M[address];
M[address] = 1;
return result;

}

• swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

}

• compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}

Page 2

Lec 5.59/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Implementing Locks with test&set

• Simple solution:
int value = 0; // Free

Acquire() {
while (test&set(value)); // while busy

}

Release() {
value = 0;

}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now

busy. It returns 0 so while exits
– If lock is busy, test&set reads 1 and sets value=1 (no change). It

returns 1, so while loop continues
– When we set value = 0, someone else can get lock

test&set (&address) {
result = M[address];
M[address] = 1;
return result;

}

Lec 5.69/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– Inefficient: busy-waiting thread will consume cycles waiting
– Waiting thread may take cycles away from thread holding lock!
– Priority Inversion: If busy-waiting thread has higher priority

than thread holding lock  no progress!
• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may wait for

an arbitrary length of time!
– Even if OK for locks, definitely not ok for other primitives
– Homework/exam solutions should not have busy-waiting!

Lec 5.79/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}

Lec 5.89/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Locks using test&set vs. Interrupts
• Compare to “disable interrupt” solution (last lecture)

• Basically replace
– disable interrupts  while (test&set(guard));
– enable interrupts  guard = 0;

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}

Page 3

Lec 5.99/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Recap: Locks
int value = 0;
Acquire() {
// Short busy-wait time
disable interrupts;
if (value == 1) {

put thread on wait-queue;
go to sleep() //??

} else {
value = 1;
enable interrupts;

}
}

Release() {
// Short busy-wait time
disable interrupts;
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

If one thread in critical
section, no other
activity (including OS)
can run!

Lec 5.109/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Recap: Locks
int guard = 0;
int value = 0;
Acquire() {
// Short busy-wait time
while(test&set(guard));
if (value == 1) {

put thread on wait-queue;
go to sleep()& guard = 0;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
guard = 0;

}

lock.Acquire();
…
critical section;
…
lock.Release();

int value = 0;
Acquire() {

while(test&set(value));
}

Release() {
value = 0;

}

Threads waiting to
enter critical section
busy-wait

Lec 5.119/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Where are we going with
synchronization?

• We are going to implement various higher-level
synchronization primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load
and store

– Need to provide primitives useful at user-level

Load/Store Disable Ints Test&Set Comp&Swap

Locks Semaphores Monitors Send/Receive

Shared Programs

Hardware

Higher-
level
API

Programs

Lec 5.129/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Semaphores
• Semaphores are a kind of generalized locks

– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value
and supports the following two operations:

– P(): an atomic operation that waits for semaphore to become
positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore by 1,

waking up a waiting P, if any
» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch

Page 4

Lec 5.139/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Value=2Value=1Value=0

Semaphores Like Integers Except
• Semaphores are like integers, except

– No negative values
– Only operations allowed are P and V – can’t read or write

value, except to set it initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup from V –

even if they both happen at same time

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2

Lec 5.149/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Two Uses of Semaphores
• Mutual Exclusion (initial value = 1)

– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

semaphore.P();
// Critical section goes here
semaphore.V();

• Scheduling Constraints (initial value = 0)
– Allow thread 1 to wait for a signal from thread 2, i.e., thread 2

schedules thread 1 when a given constrained is satisfied
– Example: suppose you had to implement ThreadJoin which

must wait for thread to terminiate:
Initial value of semaphore = 0
ThreadJoin {

semaphore.P();
}

ThreadFinish {
semaphore.V();

}

Lec 5.159/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in
lockstep, so put a fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer

Lec 5.169/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Correctness constraints for solution

• Correctness Constraints:
– Consumer must wait for producer to fill slots, if empty

(scheduling constraint)
– Producer must wait for consumer to make room in buffer, if all

full (scheduling constraint)
– Only one thread can manipulate buffer queue at a time (mutual

exclusion)

• General rule of thumb:
Use a separate semaphore for each constraint
– Semaphore fullSlots; // consumer’s constraint

– Semaphore emptySlots;// producer’s constraint
– Semaphore mutex; // mutual exclusion

Page 5

Lec 5.179/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Full Solution to Bounded Buffer
Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {
emptySlots.P(); // Wait until space
mutex.P(); // Wait until machine free
Enqueue(item);
mutex.V();
fullSlots.V(); // Tell consumers there is

// more coke
}

Consumer() {
fullSlots.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptySlots.V(); // tell producer need more
return item;

}

Lec 5.189/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Discussion about Solution
• Why asymmetry?

– Producer does: emptySlots.P(), fullSlots.V()
– Consumer does: fullSlots.P(), emptySlots.V()

Decrease # of
empty slots

Increase # of
occupied slots

Increase # of
empty slots

Decrease # of
occupied slots

Lec 5.199/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Discussion about Solution
• Is order of P’s important?

– Yes! Can cause deadlock
• Is order of V’s important?

– No, except that it might affect
scheduling efficiency

• What if we have 2 producers or 2
consumers?

– Do we need to change anything?

Producer(item) {
mutex.P();
emptySlots.P();
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();

item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}

Lec 5.209/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

5min Break

Page 6

Lec 5.219/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Motivation for Monitors and Condition
Variables

• Semaphores are a huge step up; just think of trying to do
the bounded buffer with only loads and stores

• Problem is that semaphores are dual purpose:
– They are used for both mutex and scheduling constraints
– Example: the fact that flipping of P’s in bounded buffer gives

deadlock is not immediately obvious. How do you prove
correctness to someone?

Lec 5.229/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Motivation for Monitors and Condition
Variables

• Cleaner idea: Use locks for mutual exclusion and condition
variables for scheduling constraints

• Monitor: a lock and zero or more condition variables for
managing concurrent access to shared data

– Some languages like Java provide this natively
– Most others use actual locks and condition variables

Lec 5.239/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something
inside a critical section

– Key idea: make it possible to go to sleep inside critical section by
atomically releasing lock at time we go to sleep

Lec 5.249/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Simple Monitor Example
• Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Lock shared data
queue.enqueue(item); // Add item
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Lock shared data
item = queue.dequeue();// Get next item or null
lock.Release(); // Release Lock
return(item); // Might return null

}

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables
– Cannot put consumer to sleep if no work!

Page 7

Lec 5.259/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Condition Variables

• Condition Variable: a queue of threads waiting for something
inside a critical section

– Key idea: allow sleeping inside critical section by atomically
releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep. Re-

acquire lock later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

Lec 5.269/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Complete Monitor Example (with condition
variable)

• Here is an (infinite) synchronized queue
Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}

Lec 5.279/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Mesa vs. Hoare monitors

• Need to be careful about precise definition of signal and wait.
Consider a piece of our dequeue code:

while (queue.isEmpty()) {
dataready.wait(&lock); // If nothing, sleep

}
item = queue.dequeue();// Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue();// Get next item

• Answer: depends on the type of scheduling
– Hoare-style
– Mesa-style

Lec 5.289/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Hoare monitors

• Signaler gives up lock, CPU to waiter; waiter runs
immediately

• Waiter gives up lock, processor back to signaler when it exits
critical section or if it waits again

• Most textbooks

Lock.Acquire()
…
if (queue.isEmpty()) {
dataready.wait(&lock);

}
…
lock.Release();

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

Lock, CPU

Page 8

Lec 5.299/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Mesa monitors

• Signaler keeps lock and processor
• Waiter placed on a local “e” queue for the monitor
• Practically, need to check condition again after wait
• Most real operating systems

Lock.Acquire()
…
while (queue.isEmpty()) {
dataready.wait(&lock);

}
…
lock.Release();

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

Put waiting
thread on

ready queue

Lec 5.309/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Mesa monitors – lock transfer

Q: How do the scheduled threads get a lock on the monitor
when they restart?

A: At every exit from the monitor, and the end of every wait
call where there would normally be a Release, there is a
call to “schedule”: which does a Release or transfer.

…
lock.Acquire()
…
dataready.signal();
…
lock.Release();

schedule() {
if there is a thread in e
select and remove one thread from e and restart it

else
lock.Release()

wait() {
add this thread to this.queue
schedule();
sleep();

}

Lec 5.319/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Mesa monitors – lock transfer

Q: How do the scheduled threads get a lock on the monitor
when they restart?

A: At every exit from the monitor, and the end of every wait
call where there would normally be a Release, there is a
call to “schedule”: which does a Release or transfer.

…
lock.Acquire()
…
dataready.signal();
…
schedule();

schedule() {
if there is a thread in e
select and remove one thread from e and restart it

else
lock.Release()

wait() {
add this thread to this.queue
schedule();
sleep();

}

Lec 5.329/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Mesa monitors – lock transfer

Q: How do the scheduled threads get a lock on the monitor
when they restart?

A: At every exit from the monitor, and the end of every wait
call where there would normally be a Release, there is a
call to “schedule”: which does a Release or transfer.

…
lock.Acquire()
…
dataready.signal();
…
schedule();

schedule() {
if there is a thread in e
select and remove one thread from e and restart it

else
lock.Release()

XFER

wait() {
add this thread to this.queue
schedule();
sleep();

}

Page 9

Lec 5.339/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Mesa monitors – lock transfer

Q: How do the scheduled threads get a lock on the monitor
when they restart?

A: At every exit from the monitor, and the end of every wait
call where there would normally be a Release, there is a
call to “schedule”: which does a Release or transfer.

wait() {
add this thread to this.qeue
schedule();
sleep();

}

…
lock.Acquire()
…
dataready.signal();
…
schedule();

schedule() {
if there is a thread in e
select and remove one thread from e and restart it

else
lock.Release() Release

Lec 5.349/18/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Summary
• Locks construction based on atomic seq. of instructions

– Must be very careful not to waste/tie up machine resources
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to
protect modifications of that variable

• Semaphores
– Generalized locks
– Two operations: P(), V()

• Monitors: A synchronous object plus one or more condition
variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()

