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Goals for Today
• Atomic instruction sequence

• Continue with Synchronization Abstractions
– Semaphores, Monitors and condition variables

Note: Some slides and/or pictures in the following are adapted from slides 
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D. 
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric 
Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.
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Atomic Read-Modify-Write 
instructions

• Problems with interrupt-based lock solution:
– Can’t give lock implementation to users
– Doesn’t work well on multiprocessor

» Disabling interrupts on all processors requires messages and 
would be very time consuming

• Alternative: atomic instruction sequences
– These instructions read a value from memory and write a new 

value atomically
– Hardware is responsible for implementing this correctly 

» on both uniprocessors (not too hard) 
» and multiprocessors (requires help from cache coherence 

protocol)
– Unlike disabling interrupts, can be used on both 

uniprocessors and multiprocessors
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Examples of Read-Modify-Write 

• test&set (&address) { /* most architectures */
result = M[address];
M[address] = 1;
return result;

}

• swap (&address, register) { /* x86 */
temp = M[address];
M[address] = register;
register = temp;

}

• compare&swap (&address, reg1, reg2) { /* 68000 */
if (reg1 == M[address]) {

M[address] = reg2;
return success;

} else {
return failure;

}
}
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Implementing Locks with test&set

• Simple solution:
int value = 0; // Free

Acquire() {
while (test&set(value)); // while busy

}

Release() {
value = 0;

}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now 

busy.  It returns 0 so while exits
– If lock is busy, test&set reads 1 and sets value=1 (no change). It 

returns 1, so while loop continues
– When we set value = 0, someone else can get lock

test&set (&address) {
result = M[address];
M[address] = 1;
return result;

}
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Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– Inefficient: busy-waiting thread will consume cycles waiting
– Waiting thread may take cycles away from thread holding lock! 
– Priority Inversion: If busy-waiting thread has higher priority 

than thread holding lock  no progress!
• Priority Inversion problem with original Martian rover 
• For semaphores and monitors, waiting thread may wait for 

an arbitrary length of time!
– Even if OK for locks, definitely not ok for other primitives
– Homework/exam solutions should not have busy-waiting!
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Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
guard = 0;

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time
while (test&set(guard));
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;

} else {
value = BUSY;
guard = 0;

}
}
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Locks using test&set vs. Interrupts
• Compare to “disable interrupt” solution (last lecture)

• Basically replace 
– disable interrupts  while (test&set(guard));
– enable interrupts  guard = 0;

int value = FREE;

Acquire() {
disable interrupts;
if (value == BUSY) {

put thread on wait queue;
Go to sleep();
// Enable interrupts?

} else {
value = BUSY;

}
enable interrupts;

}

Release() {
disable interrupts;
if (anyone on wait queue) {

take thread off wait queue
Place on ready queue;

} else {
value = FREE;

}
enable interrupts;

}
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Recap: Locks
int value = 0;
Acquire() {
// Short busy-wait time
disable interrupts;
if (value == 1) {

put thread on wait-queue;
go to sleep() //?? 

} else {
value = 1;
enable interrupts;

}
}

Release() {
// Short busy-wait time
disable interrupts;
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
enable interrupts;

}

lock.Acquire();
…
critical section;
…
lock.Release();

Acquire() {
disable interrupts;

}

Release() {
enable interrupts;

}

If one thread in critical 
section, no other 
activity (including OS) 
can run! 
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Recap: Locks
int guard = 0;
int value = 0;
Acquire() {
// Short busy-wait time
while(test&set(guard));
if (value == 1) {

put thread on wait-queue;
go to sleep()& guard = 0;

} else {
value = 1;
guard = 0;

}
}

Release() {
// Short busy-wait time
while (test&set(guard));
if anyone on wait queue {

take thread off wait-queue
Place on ready queue;

} else {
value = 0;

}
guard = 0;

}

lock.Acquire();
…
critical section;
…
lock.Release();

int value = 0;
Acquire() {

while(test&set(value));
}

Release() {
value = 0;

}

Threads waiting to 
enter critical section 
busy-wait
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Where are we going with 
synchronization?

• We are going to implement various higher-level 
synchronization primitives using atomic operations

– Everything is pretty painful if only atomic primitives are load 
and store

– Need to provide primitives useful at user-level

Load/Store    Disable Ints   Test&Set   Comp&Swap

Locks   Semaphores   Monitors   Send/Receive

Shared Programs

Hardware

Higher-
level 
API

Programs
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Semaphores
• Semaphores are a kind of generalized locks

– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value 
and supports the following two operations:

– P(): an atomic operation that waits for semaphore to become 
positive, then decrements it by 1 

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore by 1, 

waking up a waiting P, if any
» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for 
“verhogen” (to increment) in Dutch
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Value=2Value=1Value=0

Semaphores Like Integers Except
• Semaphores are like integers, except

– No negative values
– Only operations allowed are P and V – can’t read or write 

value, except to set it initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup from V –

even if they both happen at same time

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource control:

Value=1Value=0Value=2
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Two Uses of Semaphores
• Mutual Exclusion (initial value = 1)

– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

semaphore.P();
// Critical section goes here
semaphore.V();

• Scheduling Constraints (initial value = 0)
– Allow thread 1 to wait for a signal from thread 2, i.e., thread 2 

schedules thread 1 when a given constrained is satisfied
– Example: suppose you had to implement ThreadJoin which 

must wait for thread to terminiate:
Initial value of semaphore = 0
ThreadJoin {

semaphore.P();
}

ThreadFinish {
semaphore.V();

}
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Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in 
lockstep, so put a fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out if machine is empty

Producer ConsumerBuffer
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Correctness constraints for solution

• Correctness Constraints:
– Consumer must wait for producer to fill slots, if empty 

(scheduling constraint)
– Producer must wait for consumer to make room in buffer, if all 

full (scheduling constraint)
– Only one thread can manipulate buffer queue at a time (mutual 

exclusion)

• General rule of thumb: 
Use a separate semaphore for each constraint
– Semaphore fullSlots; // consumer’s constraint

– Semaphore emptySlots;// producer’s constraint
– Semaphore mutex;       // mutual exclusion
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Full Solution to Bounded Buffer
Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer(item) {
emptySlots.P(); // Wait until space
mutex.P(); // Wait until machine free
Enqueue(item);
mutex.V();
fullSlots.V(); // Tell consumers there is

// more coke
}

Consumer() {
fullSlots.P(); // Check if there’s a coke
mutex.P(); // Wait until machine free
item = Dequeue();
mutex.V();
emptySlots.V(); // tell producer need more
return item;

}
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Discussion about Solution
• Why asymmetry?

– Producer does: emptySlots.P(), fullSlots.V()
– Consumer does: fullSlots.P(), emptySlots.V()

Decrease # of 
empty slots

Increase # of 
occupied slots

Increase # of 
empty slots

Decrease # of 
occupied slots
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Discussion about Solution
• Is order of P’s important?

– Yes!  Can cause deadlock
• Is order of V’s important?

– No, except that it might affect 
scheduling efficiency

• What if we have 2 producers or 2 
consumers?

– Do we need to change anything?

Producer(item) {
mutex.P(); 
emptySlots.P();
Enqueue(item);
mutex.V();
fullSlots.V();

}

Consumer() {
fullSlots.P();
mutex.P();

item = Dequeue();
mutex.V();
emptySlots.V();
return item;

}
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5min Break
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Motivation for Monitors and Condition 
Variables

• Semaphores are a huge step up; just think of trying to do 
the bounded buffer with only loads and stores

• Problem is that semaphores are dual purpose:
– They are used for both mutex and scheduling constraints
– Example: the fact that flipping of P’s in bounded buffer gives 

deadlock is not immediately obvious.  How do you prove 
correctness to someone?
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Motivation for Monitors and Condition 
Variables

• Cleaner idea: Use locks for mutual exclusion and condition 
variables for scheduling constraints

• Monitor: a lock and zero or more condition variables for 
managing concurrent access to shared data

– Some languages like Java provide this natively
– Most others use actual locks and condition variables
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Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something 
inside a critical section

– Key idea: make it possible to go to sleep inside critical section by 
atomically releasing lock at time we go to sleep
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Simple Monitor Example
• Here is an (infinite) synchronized queue

Lock lock;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Lock shared data
queue.enqueue(item); // Add item
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Lock shared data
item = queue.dequeue();// Get next item or null
lock.Release(); // Release Lock
return(item); // Might return null

}

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables
– Cannot put consumer to sleep if no work!
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Condition Variables

• Condition Variable: a queue of threads waiting for something 
inside a critical section

– Key idea: allow sleeping inside critical section by atomically 
releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep. Re-

acquire lock later, before returning. 
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

Lec 5.269/18/13 Anthony D. Joseph and John Canny       CS162        ©UCB Fall 2013

Complete Monitor Example (with condition 
variable)

• Here is an (infinite) synchronized queue
Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {
lock.Acquire(); // Get Lock
queue.enqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue() {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue(); // Get next item
lock.Release(); // Release Lock
return(item);

}
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Mesa vs. Hoare monitors

• Need to be careful about precise definition of signal and wait.  
Consider a piece of our dequeue code:

while (queue.isEmpty()) {
dataready.wait(&lock); // If nothing, sleep

}
item = queue.dequeue();// Get next item

– Why didn’t we do this?
if (queue.isEmpty()) {

dataready.wait(&lock); // If nothing, sleep
}
item = queue.dequeue();// Get next item

• Answer: depends on the type of scheduling
– Hoare-style
– Mesa-style
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Hoare monitors

• Signaler gives up lock, CPU to waiter; waiter runs 
immediately

• Waiter gives up lock, processor back to signaler when it exits 
critical section or if it waits again

• Most textbooks

Lock.Acquire()
…
if (queue.isEmpty()) {
dataready.wait(&lock); 

}
…
lock.Release();

…
lock.Acquire()
… 
dataready.signal();
…
lock.Release();

Lock, CPU
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Mesa monitors

• Signaler keeps lock and processor
• Waiter placed on a local “e” queue for the monitor
• Practically, need to check condition again after wait
• Most real operating systems

Lock.Acquire()
…
while (queue.isEmpty()) {
dataready.wait(&lock); 

}
…
lock.Release();

…
lock.Acquire()
… 
dataready.signal();
…
lock.Release();

Put waiting 
thread on 

ready queue
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Mesa monitors – lock transfer

Q: How do the scheduled threads get a lock on the monitor
when they restart? 

A: At every exit from the monitor, and the end of every wait
call where there would normally be a Release, there is a
call to “schedule”: which does a Release or transfer.

…
lock.Acquire()
… 
dataready.signal();
…
lock.Release();

schedule() {
if there is a thread in e 
select and remove one thread from e and restart it 

else 
lock.Release()

wait() {
add this thread to this.queue
schedule();
sleep(); 

}
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Mesa monitors – lock transfer

Q: How do the scheduled threads get a lock on the monitor
when they restart? 

A: At every exit from the monitor, and the end of every wait
call where there would normally be a Release, there is a
call to “schedule”: which does a Release or transfer.

…
lock.Acquire()
… 
dataready.signal();
…
schedule();

schedule() {
if there is a thread in e 
select and remove one thread from e and restart it 

else 
lock.Release()

wait() {
add this thread to this.queue
schedule();
sleep(); 

}
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Mesa monitors – lock transfer

Q: How do the scheduled threads get a lock on the monitor
when they restart? 

A: At every exit from the monitor, and the end of every wait
call where there would normally be a Release, there is a
call to “schedule”: which does a Release or transfer.

…
lock.Acquire()
… 
dataready.signal();
…
schedule();

schedule() {
if there is a thread in e 
select and remove one thread from e and restart it 

else 
lock.Release()

XFER

wait() {
add this thread to this.queue
schedule();
sleep(); 

}
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Mesa monitors – lock transfer

Q: How do the scheduled threads get a lock on the monitor
when they restart? 

A: At every exit from the monitor, and the end of every wait
call where there would normally be a Release, there is a
call to “schedule”: which does a Release or transfer.

wait() {
add this thread to this.qeue
schedule();
sleep(); 

}

…
lock.Acquire()
… 
dataready.signal();
…
schedule();

schedule() {
if there is a thread in e 
select and remove one thread from e and restart it 

else 
lock.Release() Release
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Summary
• Locks construction based on atomic seq. of instructions

– Must be very careful not to waste/tie up machine resources
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to 
protect modifications of that variable

• Semaphores
– Generalized locks
– Two operations: P(), V()

• Monitors: A synchronous object plus one or more condition 
variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()


