CS162
Operating Systems and
Systems Programming

Lecture 3

Concurrency and Thread Dispatching

September 11, 2013
Anthony D. Joseph and John Canny
http://inst.eecs.berkeley.edu/~cs162

Goals for Today

Review: Processes and Threads
Thread Dispatching
Cooperating Threads
Concurrency examples

Note: Some slides and/or pictures in the following are adapted from slides
©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Anthony D.
Joseph, John Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric
Brewer, Ras Bodik, lon Stoica, Doug Tygar, and David Wagner.

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.2

Why Processes & Threads?

Goals:

« Multiprogramming: Run multiple applications concurrently
* Protection: Don’t want a bad application to crash system!

Solution: U

(Process: unit of execution and allocation
 Virtual Machine abstraction: give process illusion it owns
___Mmachine (i.e., CPU, Memory, and |O device multiplexing)

Challenge: @

* Process creation & switching expensive
* Need concurrency within same app (e.g., web server)

Solution: U

[Thread: Decouple allocation and execution J

* Run multiple threads within same process
9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.3

Putting it together: Process

(Unix) Process
CAGnt tmp) {)

if (tmp<2)
B(); Memory
printf(tmp); |_Stack J R
\ — | esources
BOA (e fle
Sequential C0; So'gk’et |
gtream _Of } contexts)
instructions cO {

A); CPU state

(PC, SP,
reqgisters..)

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.4

Putting it together: Processes

Process 1 Process 2

Process N

Switch overhead: high

— CPU state:

— Memory/10 state: high

Process creation: high
Protection

— CPU:
— Memory/IO:

Sharing overhead: high

1 process
at atime

(involves at least a
context switch)

CPU
(1 core)

9/11/13 Anthony D. Joseph and John Canny

CS162 ©UCB Fall 2013 Lec 3.5

Process 1
threads

T S

Putting it together: Threads

Process N

Mem

10
state

CPU CPU
state state

threads

T S

Mem

1O
state

CPU CPU
state state

CPU
sched.

OS

1 thread
at a time

CPU
(1 core)

9/11/13 Anthony D. Joseph and John Canny CS162

* Switch overhead:
(only CPU state)

 Thread creation:

* Protection
— CPU:
— Memory/lIO: No

« Sharing overhead.:
(thread switch
overhead low)

©UCB Fall 2013 Lec 3.6

Putting it together: Multi-Cores

Process 1 Process N
threads threads
=) (5 e =Y () = |* Switch overhead:
. . (only CPU state)
o O 11+ Thread creation:
state state
* Protection
CPU CPU CPU CPU
state state state state - CPU
— Memory/lIO: No
CPU oS * Sharing overhead:
sched. (thread switch
577 X< 4threads at | Overhead low)
a time
=
core 1 || Core2 || Core 3 || Core4 | |CPU
9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.7

Putting It together: Hyper-Threading

Process 1 Process N
threads threads
N () e Y () = |* Switch overhead
. | between hardware-
To) 10 threads:
state state (done in hardware)
ceuf [ceu cu | fceu Contention for
ALUs/FPUs may hurt
performance
CPU 0S
hardware-threads Senee!
S _ ——— 8 threads at
(hyperthreading) - 2 time
A\
CPU
core core core core

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.8

Process Control Block

* The current state of process held in a process control block
(PCB): (for a single-threaded process)

process state

process number

program counter

reqgisters

memory limits

list of open files

Process Control Block

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.9

 This is also called a “context switch”

CPU Switch From Process to Process

process P,

executing

executing W

“idle

operating system

interrupt or system call

P 4

save slate into PCB,
L

reload state from PCB,

interrupt or system call

save state into PCB

reload state from PCB,

process P,

idle

executing

idle

« Code executed in kernel above is overhead

9/11/13

— Overhead sets minimum practical switching time

— Less overhead with SMT/Hyperthreading, but... contention

for resources instead
Anthony D. Joseph and John Canny

CS162

©UCB Fall 2013

Lec 3.10

The Numbers

Context switch in Linux: 3-4 usecs (Current Intel i7 & ES).
Some surprises:

« Thread switching only slightly faster than process switching
(100 ns).

« But switching across cores about 2x more expensive than
within-core switching.

« Context switch time increases sharply with the size of the
working set*, and can increase 100x or more.

* The working set is the subset of memory used by the
process in a time window.

Moral: Context switching depends mostly on cache limits and
the process or thread’s hunger for memory.

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.11

The Numbers

« Many process are multi-threaded, so thread context
switches may be either within-process or across-
processes. The latter involve changes in memory and 1/O
tables and are more like single-threaded process switches
described earlier.

"B Windows Task Manager E‘@g

File Options View Help

| Applications | Processes | Services | Performance I Metworking | Lizers |
Image MName PID User Mame CPU Memaory {F‘ri;ate Warkin... | Threads Description Il
thunderhird.exe *32 5544 ifc Qo 422 212K 28 Thunderhird
firefox.exe *32 al54 ifc Qo 362,048 K 43 Firefox
BCU.exe *32 4752 ifc Qg 109,012 K 6 Browser Configuration Utility
dwm.exe 4036 jfc aa 105,675 K 5 Desktop Window Manager
POWERPNT.EXE 140 jfc oo 102, 204 K 12 Microsoft PowerPoint
explorer.exe 1780 ifc Qg 73,294 K 35 Windows Explorer

| Dropbox.exe *32 3330 ifc oo 56, 792 K 34 Dropbox A

CameraHelpershell. exe... 4832 jfc 0o 15,068 K 9 Wehcam Controller 3
Emacs.exe *32 4356 ifc Qo 12,996 K 3 GMUEmacs: The extensible self-doc
FlashPlayerPlugin_11_&... 4280 jfc Qg 10,820 K 12 Adobe Flash Player 11.5 ra0o0
mvxdsync, exe 3420 ([N} 10,192 K 10
emacs.exe *32 2736 ifc Qo 10,000 K, 3 GMNUEmacs: The extensible self-doc
BtvStack.exe 2708 ifc a0 9,444 K 43 Bluetooth Stack Server

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.12

Classification

S 0
89
threads E c% one Many
per AS:
One MS/DOS, early Traditional UNIX

Macintosh

Embedded systems

(Geoworks, VxWorks, Mach, OS/2, ST
Many JavaOsS,etc) Win NT to 8, Solaris,

JavaOs, Pilot(PC) HP-UX, OS X

* Real operating systems have either
— One or many address spaces
— One or many threads per address space

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.13

Thread State

« State shared by all threads in process/addr space
— Content of memory (global variables, heap)
— /O state (file system, network connections, etc)

« State “private” to each thread
— Kept in TCB = Thread Control Block
— CPU reqisters (including, program counter)
— Execution stack — what is this?

« Execution Stack
— Parameters, temporary variables
— Return PCs are kept while called procedures are executing

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.14

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.15

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
Stack ret=addrzZ
Pointer l

Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.16

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
Stack ret=addrzZ
Pointer l

Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.17

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
Stack ret=addrzZ
Pointer l

Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.18

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
ret=addrZ
B: ret=addrY
Stack
Pointer 1
Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.19

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
ret=addrZ
B: ret=addrY
Stack
Pointer 1
Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.20

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
ret=addrZ
B: ret=addrY
C: ret=addruU
Stack
Pointer l
Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.21

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
ret=addrZ
B: ret=addrY
C: ret=addruU
Stack
Pointer l
Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.22

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
ret=addrZ

B: ret=addrY

C: ret=addruU

A: tmp=2
Stack ret=addrV

Pointer l

Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.23

addrX:

addrY:

addrU:

addrV:

addrZ:
9/11/13

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}

A(1);

exit;

Review: Execution Stack Example

A: tmp=1
ret=addrZ

B: ret=addrY

C: ret=addruU

A: tmp=2
Stack ret=addrV

Pointer l

Stack Growth

« Stack holds function arguments,
return address

* Permits recursive execution
« Crucial to modern languages

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.24

addrX:

addrY:

addrU:

addrV:

addrZ:

9/11/13

Review: Execution Stack Example

A(int tmp) {

if (tmp<2)
BO);

printf(tmp);

}

B() {
C();

}

CO {
A(2);

}

A(1);

exit;

A: tmp=1
ret=addrZ

B: ret=addrY

C: ret=addruU

A: tmp=2
Stack ret=addrV

Pointer l
Stack Growth

Output:
2

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 3.25

addrX:

addrY:

addrU:

addrV:

addrZ:

9/11/13

Review: Execution Stack Example

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}
A(1);

exit;

A: tmp=1
ret=addrZ

B: ret=addrY

C: ret=addruU

Stack

Pointer l
Stack Growth

Output:

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 3.26

Review: Execution Stack Example

| A: tmp=1

addrX: | A(int tmp) { ret=addrZ
If (tmp<2) B: ret=addrY

B(): Stack

addrY: printf(tmp); Pointer l
} Stack Growth
B({
CO:;

addrU: | }
CO{ Output:
A2); 2

addrV: | }

| A(1);
addrz: |_exit;

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.27

addrX:

addrY:

addrU:

addrV:

addrZ:

9/11/13

Review: Execution Stack Example

A(int tmp) {
if (tmp<2)
B();

printf(tmp);

}

B() {
C0;

}

CO {
A(2);

}
A(1);

exit;

A: tmp=1
Stack ret=addrZ
Pointer l

Stack Growth

Output:

2

1

Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013

Lec 3.28

Review: Execution Stack Example

addrX:| A(int tmp) {
' if (tmp<2)
B();
addrY:| printf(tmp);
}
B0 {
CO:;
addrU: | }
COA Output:
A(2); 2
addrV: | } 1
| A@:
addrz: |_exit;

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.29

Single-Threaded Example

* Imagine the following C program:

main ()
ComputePI (“pi.txt”);
PrintClassList (“clist.text”);

« What is the behavior here?
— Program would never print out class list
— Why? ComputePl would never finish

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.30

Use of Threads
« Version of program with Threads:

main () {
CreateThread (ComputePI (“p1i.txt”));
CreateThread (PrintClassList (Y“clist.text”));

« What does “CreateThread” do?
— Start independent thread running given procedure

« What is the behavior here?
— Now, you would actually see the class list
— This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2 CPU1 CPU2

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.31

Memory Footprint of Two-Thread

Example

* If we stopped this program and examined it with a
debugger, we would see

— Two sets of CPU registers
— Two sets of Stacks

« Questions:

— How do we position stacks relative to
each other?

— What maximum size should we choose
for the stacks?

— What happens if threads violate this?
— How might you catch violations?

aoeds ssalppv

Global Data

Code

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.32

Per Thread State

« Each Thread has a Thread Control Block (TCB)

— Execution State: CPU registers, program counter (PC), pointer
to stack (SP)

— Scheduling info: state, priority, CPU time

— Various Pointers (for implementing scheduling queues)
— Pointer to enclosing process (PCB)

— Etc (add stuff as you find a need)

* OS Keeps track of TCBs in protected memory
— In Array, or Linked List, or ...

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.33

Multithreaded Processes

« PCB points to multiple TCBs:

PCB

» PCB

*» PCB

N

\’ TCB

o TCB

TCB

TCB

*» TCB

*» TCB

« Switching threads within a block is a simple thread switch

« Switching threads across blocks requires changes to

memory and I/O address tables.

9/11/13 Anthony D. Joseph and John Canny CS162

©UCB Fall 2013

Lec 3.34

Lifecycle of a Thread (or Process)

admitted interrupt ' terminate

I/O or event completion scheduMIerdlspatch I/O or event wait

* As a thread executes, it changes state:
— new: The thread is being created
—ready: The thread is waiting to run
— running: Instructions are being executed
— waiting: Thread waiting for some event to occur
— terminated: The thread has finished execution

« “Active” threads are represented by their TCBs

— TCBs organized into queues based on their state
9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.35

Ready Queues

* Note because of the actual number of live threads in a typical OS,
and the (much smaller) number of running threads, most threads will

be in a “ready” state.

« Thread not running = TCB is in some scheduler queue

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.36

Ready Queue And Various I/O Device Queues

« Thread not running = TCB is in some scheduler queue
— Separate queue for each device/signal/condition
— Each queue can have a different scheduler policy

Ready |[Head » Link » Link * Link —
Queue | Tail Registers Registers Registers -
Other Other Other
sSSD Head —_|__ State State State
Unito |[Tail - TCBy TCB, TCB,
Dis_k Head » Link Link — 1
Unit 0 [pail Registers Registerd =
Other Other
Disk Head — 1 State State
Unit 2 Tail _I: TCBZ TCB3
Ether Head |——Aomk T L
Netwk O [/ Registery -
Tail Other
State
TCBy,

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.37

Administrivia: Project Signup
* Project Signup: Use “Group/Section Signup” Link
— 4-5 members to a group, everyone must attend the same section
» Use Piazza pinned teammate search thread (please close when done!)

— Only submit once per group! Due Thu (9/12) by 11:59PM

» Everyone in group must have logged into their cs162-xx accounts once
before you register the group, Select at least 3 potential sections

* New section assignments: Watch “Group/Section Assignment” Link
— Attend new sections NEXT week

Section Time Location TA
101 Tu 9:00A-10:00A 310 Soda Matt
102 Tu 10:00A-11:00A 75 Evans Matt
103 Tu 11:00A-12:00P /71 Evans George
104 Tu 3:00P-4:00P 24 Wheeler George
105 We 10:00A-11:00A 85 Evans Kevin
106 We 11:00A-12:00P 85 Evans Kevin
107 Tu 1:00P-2:00P 405 Soda Allen
108 Tu 2:00P-3:00P 405 Soda Allen
911715 Anthony D. Joseph and John Canny CS1e2 ©UCB Fall 2013 Lec 3.58

5min Break

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.39

Dispatch Loop

« Conceptually, the dispatching loop of the operating system looks
as follows:

Loop {
RunThread () ;
ChooseNextThread () ;
SaveStateOfCPU (curTCB) ;
LoadStateOfCPU (newTCRB) ;

« This is an infinite loop
— One could argue that this is all that the OS does

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.40

Running a thread

Consider first portion: RunThread ()

« How do | run a thread?
— Load its state (registers, stack pointer) into CPU
— Load environment (virtual memory space, etc)
— Jump to the PC

 How does the dispatcher get control back?
— Internal events: thread returns control voluntarily
— External events: thread gets preempted

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.41

Yielding through Internal Events

* Blocking on I/O
— The act of requesting 1/0 implicitly yields the CPU
« Waiting on a “signal” from other thread
— Thread asks to wait and thus yields the CPU
 Thread executes a yield ()
— Thread volunteers to give up CPU
computePTI () {
while (TRUE) {
ComputeNextDigit () ;
yield() ;
}

}

— Note that yield () must be called by programmer frequently
enough!

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.42

Stack for Yielding a Thread

ComputePI
Trap to OS C

User Stack

yield

Kernel Stack

 How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* deallocates finished threads */

}
* Finished thread not killed right away. Why?

— Move them in “exit/terminated” state
— ThreadHouseKeeping() deallocates finished threads

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.43

Stack for Yielding a Thread

ComputePI
Trap to OS <

: User Stack
yield

Kernel Stack

 How do we run a new thread?
run_new_thread() {
newThread = PickNewThread();
switch(curThread, newThread);
ThreadHouseKeeping(); /* deallocates finished threads */
}
 How does dispatcher switch to a new thread?
— Save anything next thread may trash: PC, regs, SP
— Maintain isolation for each thread

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.44

Review: Two Thread Yield Example

« Consider the following

code blocks:

proc A() {

B()

}

Thread S Thread T
A A
B(while) B(while)
yield yield

proc B() {
while (TRUE) {
yield();

}

« Suppose we have two
threads:

9/11/13

—Threads Sand T

Anthony D. Joseph and John Canny

CS162

s\

©UCB Fall 2013

Lec 3.45

Detour: Interrupt Controller

CPU

[]Int Disable

MSe 1dnuiaiul
apoouz Aluolid

:

Interrupt NMI

Network
 Interrupts invoked with interrupt lines from devices
 Interrupt controller chooses interrupt request to honor

— Mask enables/disables interrupts
— Priority encoder picks highest enabled interrupt
— Software Interrupt Set/Cleared by Software
— Interrupt identity specified with ID line
« CPU can disable all interrupts with internal flag

* Non-maskable interrupt line (NMI) can’t be disabled
9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.46

Review: Preemptive Multithreading

« Use the timer interrupt to force scheduling decisions

Interrupt C

« Timer Interrupt routine:

TimerInterrupt () {
DoPeriodicHouseKeeping () ;
run new thread();

}

Some Routine User Stack

Kernel Stack

» This is often called preemptive multithreading, since threads
are preempted for better scheduling

— Solves problem of user who doesn'’t insert yield();

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.47

Why allow cooperating threads?

People cooperate; computers help/enhance people’s lives, so
computers must cooperate

— By analogy, the non-reproducibility/non-determinism of people is
a notable problem for “carefully laid plans”

Advantage 1. Share resources
— One computer, many users

— One bank balance, many ATMs
» What if ATMs were only updated at night?
— Embedded systems (robot control: coordinate arm & hand)
Advantage 2. Speedup
— Overlap I/O and computation
— Multiprocessors — chop up program into parallel pieces
Advantage 3: Modularity
— Chop large problem up into simpler pieces
» To compile, for instance, gcc callscpp | ccl|cc2|as|Id

» Makes system easier to extend
9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.48

Threaded Web Server

el

 Multithreaded version:

y————\
{ £ N

serverLoop ()

connection = AcceptCon();
ThreadCreate (ServiceWebPage (), connection) ;

}
« Advantages of threaded version:

— Can share file caches kept in memory, results of CGl scripts,
other things

— Threads are much cheaper to create than processes, so this
has a lower per-request overhead

« What if too many requests come in at once?

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.49

Thread Pools

* Problem with previous version: Unbounded Threads
— When web-site becomes too popular — throughput sinks

* Instead, allocate a bounded “pool” of threads, representing
the maximum level of multiprogramming

/\ Master
Threa

gqueue

Thread Pool

slave (queue) ({
while (TRUE) ({
con=Dequeue (queue) ;
if (con==null)
sleepOn (queue) ;
else
ServiceWebPage (con) ;

master () {
allocThreads (slave, queue) ;
while (TRUE) {
con=AcceptCon () ;
Enqueue (queue, con) ;
wakeUp (queue) ;

}
}
9/11/13 Anthony D. Joseph and John Canny 3s162 ©UCB Fall 2013 Lec 3.50

ATM Bank Server

i

Oononon
Oononon
Oononon

/‘\ |

—l

Oononon
Oononon
Oononon

 ATM server problem:

9/11/13

— Service a set of requests
— Do so without corrupting database

N\

i

Oononon
Oononon
Oononon

A\
J 4
—\

Oononon
Oononon

—l

Oononon

— Don’t hand out too much money

Anthony D. Joseph and John Canny

CS162

©UCB Fall 2013

Lec 3.51

ATM bank server example

« Suppose we wanted to implement a server process to
handle requests from an ATM network:

BankServer () {
while (TRUE) {
ReceiveRequest (&op, &acctId, &amount) ;
ProcessRequest (op, acctlId, amount);

}
}

ProcessRequest (op, acctlId, amount) {
1f (op == deposit) Deposit(acctId, amount);
else 1f ..

}

Deposit (acctId, amount) {
acct = GetAccount (acctId); /* may use disk I/0 */
acct->balance += amount;
StoreAccount (acct); /* Involves disk I/0 */

}
« How could we speed this up?
— More than one request being processed at once
— Multiple threads (multi-proc, or overlap comp and 1/O)

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.52

Can Threads Help?

« One thread per request!

* Requests proceeds to completion, blocking as required:

Deposit (acctId, amount) {
acct = GetAccount (actId); /* May use disk I/0 */
acct->balance += amount;
StoreAccount (acct) ; /* Involves disk I/O */

}

« Unfortunately, shared state can get corrupted:

Thread 1 Thread 2
load rl, acct->balance

load rl, acct->balance
add rl, amount?2
store rl, acct->balance
add rl, amountl
store rl, acct->balance

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.53

Problem is at the lowest level

* Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y =2;
« However, What about (Initially, y = 12):
Thread A Thread B
X =1, y=2;
X =y+1; y = y*2;
— What are the possible values of x?
Thread A Thread B
x=1;
X =y+l;
y=2;
y =y*2
x=13

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.54

Problem is at the lowest level

* Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y =2;
« However, What about (Initially, y = 12):
Thread A Thread B
x=1; y =2;
X =y+1; y =y*2;
— What are the possible values of x?
Thread A Thread B
y=2;
y =y*2;
X =1;
X =y+l;
X=5

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.55

Problem is at the lowest level

* Most of the time, threads are working on separate data, so
scheduling doesn’t matter:

Thread A Thread B
x=1; y =2;
« However, What about (Initially, y = 12):
Thread A Thread B
x=1; y =2;
X =y+1; y =y*2;
— What are the possible values of x?
Thread A Thread B
y=2;
X =1;
X =y+1;
y=y*2;
X=3

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.56

Summary

« Concurrent threads are a very useful abstraction
— Allow transparent overlapping of computation and 1/O
— Allow use of parallel processing when available

« Concurrent threads introduce problems when accessing
shared data

— Programs must be insensitive to arbitrary interleavings

— Without careful design, shared variables can become
completely inconsistent

« Next lecture: deal with concurrency problems

9/11/13 Anthony D. Joseph and John Canny CS162 ©UCB Fall 2013 Lec 3.57

