Announcements

- Homework 1 is out, due on Monday
- Midterm 1 date Feb 15, 7-8:30pm: conflict?
Security principles

- Set of principle that help to design more secure software
- Keep them in mind when you build your own systems
Principle: “Know your threat model”

What will a document safe protect against?
(1) The average unskilled burglar
(2) Skilled burglar
(3) None of the above
Most "safes" you buy at Office Depot are not actual safes...
 • They are not rated nor even well designed to keep out a burglar

Rather, they are "fire safes": designed to prevent damage in case of a fire

Two big categories
 • Documents/guns/etc: Keeps temperatures below 350F
 • Will keep that passport from burning
 • Data safes: Keeps temperatures below 125F and humidity below 80%
 • Computer media much more delicate

Security lesson: Know what you are protecting and what your threat is
 • Don't expect a document-rated fire safe to keep a hard drive safe from damage in a fire
 • Don't expect either to meaningfully stop a teenager with a crowbar

And do your threat modeling **before** you commit to a security procedure!
Lesson: checkbox security and real security are often different..

- Some safes are concerned with rather low-threat attackers
 - Toddlers and the like
- Classic example are CA state mandated "gun" locks
 - A long list of "approved" devices
 - That often can't even keep a toddler out!

- Not enough to be security compliant, work on making your system secure for real
Principle: “Security is economics”

• Make it expensive for an attacker to attack, ideally more expensive than the reward the attacker gets by attacking a resource
• Often, there is a tradeoff in cost and level of security of a security mechanism
TL-15= will take 15 min to break using common tools
TL-30 = will take at least 30 min to break using common tools
TRTL-30 = at least 30 min with common tools and cutting torch
TXTL-60 = 60 minutes, working on all 6 sides, and the attacker even gets to use 8 ounces of explosives!

Q: what other principle does the choice of this safe remind you of?
A: know your threat model
These are conservative ratings: they assume an attacker with the proper set of tools and knowledge of the safe's construction
Principle: “Don’t rely on security through obscurity.”

- Shannon's Maxim: "The enemy knows the system"
- Kerckhoffs's Principle: "A cryptosystem should be secure even if everything about the system, except the key, is public knowledge."

The attacker will eventually find out the algorithm or how the system works since that part does not change (unlike a key) and that algorithm/system will be doomed forever (not as easy as changing a key)
A software lock: sandbox

• A sandbox is a mechanism (often, a software program) that isolates a process from the rest of the environment

• If some code is from an untrusted source or takes inputs from potential attacking users, running in a sandbox aims to prevents the exploits from spreading outside of the sandbox

• Various sandbox designs exist, but typically the sandbox:
 • provides a controlled set of resources for guest programs to run in (e.g., memory, disk)
 • Do not allow network access, file system access, other I/O
Example of sandbox implementation: seccomp

- Facility in the Linux Kernel
- seccomp = “secure computing”
- Allows a process to transition into secure mode in a “one-way mode” from which it can only return with an exit, or it can only read and write files that are already open, but cannot open new files or make other system calls
- So caller of sandbox opens the files it wants the dangerous process to work with and nothing more, and calls seccomp to create the sandbox and run that process
Recall monolithic browser design issue

An exploit in the parsing/rendering part of the code can result in an attacker having access to the file system in the absence of isolation.

Browser
- Parse HTML/run Javascript which comes from the wild web
- Access files on the file system

fetch password file
send to attacker.com

files
Recall: the Chrome browser

Chrome Browser

Sandbox (not seccomp, but similar)

Parse m HTML/run Javascript which come from the wild web

Rendering Engine (RE)

IPC (interprocess communication)

bitmap

Browser Kernel (BK)

Browser kernel only provides a restricted API to RE:
- RE can send a bitmap image with webpage to display to the user, but not active code
- RE cannot access what files it wishes. BK might ask the user to upload a file the *user chooses* when RE requests so, but BK will not fetch if RE asks for it

“Least Privilege” in action: RE does not get more privilege than it needs
The sandboxed process can now fail gracefully and not take the whole system down.
TCB

• Recall: the trusted computing base (TCB) is the subset of the system that has to be correct, for some security goal to be achieved

• Q: What is the TCB that ensures that if the RE fails, the browser does not fail?
• A: the sandbox

• Q: What is the TCB that ensures the RE cannot fetch whatever files it wants from the file system?
• A: the sandbox and the browser kernel
Principle: “don’t reinvent the wheel”

- Use tools that have already been worked on extensively
- They already dealt with many bugs and exploits. Writing your new tool will likely suffer from issues
- Example: for end-to-end encrypted communications, Open SSL: more than 185 vulnerabilities reported on the CVE website
- For sandboxing, use existing tools such as:
 - For Windows:
 - Wrapper around Chrome's sandbox
 - For Linux:
 - Uses seccomp as the building block
 - A set of others, investigate what you need for your situation
If you use multiple redundant protections, then all of them would need to be breached before the system’s security will be endangered.

If you don’t want to be caught with your pants around your ankles, wear both a belt and suspenders...
Q: when you use two or more mechanisms for securing a system, what is important about them?

A: that they be as different as possible, so if one fails, its unlikely the second one fails
Q: What are some other examples of defense in depth?
Two-factor authentication

Authentication using two of:

• Something you know (account details or passwords)
• Something you have (tokens or mobile phones)
• Something you are (biometrics)
Example

Online banking:
• Hardware token or card ("smth you have")
• Password ("smth you know")
Mobile phone two-factor authentication:
- Password ("smth you know")
- Code received via SMS ("smth you have")
Another example

• Password

+

• Answer to security question

This is not two-factor authentication because both of the factors are something you know
Principle: “Consider human factors.”
“Company policy: passwords must be at least 10 characters long, contain at least 2 digits, 1 uppercase character, 1 lowercase character, and 1 special character.”
company portal
Password: 1secret

Bank
password: goMets12

credit card:
browser 8

brokerage:
initial23

e-mail:
letmein

Log in to your message center.
Invalid log in or server error. Please try again.

Forgot your password?

Log in Address: zazoo@net.net.com
example: joe234@jumbowidgetsco.com

Password:

note: password is case-sensitive

Remember my Address and Password (what is this?)

LOG IN
Example: storage device for cryptographic keys

Q: what is good about this design?
A: tells users they need to protect it
Principle: ”Make your system easy to use in a secure way”
- make sure users understand how to use the system securely
- related to consider human factors
When you send information to the Internet, it might be possible for others to see that information. Do you want to continue?

In the future, do not show this message.
Internet Explorer

When you see a dialog box like this, click 'Yes' to make it go away. If available, click the checkbox first to avoid being bothered by it again.

☑ In the future, do not show this message.

[Yes] [No]
Unable to verify the identity of svn.xiph.org as a trusted site.

Possible reasons for this error:
- Your browser does not recognise the Certificate Authority that issued the site's certificate.
- The site's certificate is incomplete due to a server misconfiguration.
- You are connected to a site pretending to be svn.xiph.org, possibly to obtain your confidential information.

Please notify the site's webmaster about this problem.

Before accepting this certificate, you should examine this site's certificate carefully. Are you willing to accept this certificate for the purpose of identifying the Web site svn.xiph.org?

Examine Certificate...

- Accept this certificate permanently
- Accept this certificate temporarily for this session
- Do not accept this certificate and do not connect to this Web site
Website Certified by an Unknown Authority

Unable to verify the identity of svn.xiph.org as a trusted site.
Blah blah geekspeak geekspeak geekspeak.

Before accepting this certificate, your browser can display a second dialog full of incomprehensible information. Do you want to view this dialog?

- View Incomprehensible Information
- Make this message go away permanently
- Make this message go away temporarily for this session
- Stop doing what you were trying to do

[OK] [Cancel]
Principle: “Only as secure as the weakest link.”

(recall Sarah Palin email example)
Your Windows product must be activated within 7 days. Do you want to activate Windows now?

Yes No
Computerworld - Wells Fargo & Co. announced this week that it has completed a five-year project to Web-enable its 6,200 ATMs in 23 states. The Windows-based infrastructure is designed to allow Wells Fargo to update and add services such as new languages and envelope-free deposits to its entire network remotely.

Wells Fargo took all "the rational steps you’d take to harden any operating system," such as closing unused ports. But, "the reality is you can’t buy a new ATM that runs OS/2. This is where the industry is," he said.
Principle: “Design security in from the start.”
(Beware of bolt-on security.)
ACCIDENT ON MOTORWAY
ACCIDENT ON MOTORWAY
CAUTION! ZOMBIES! AHEAD!!!

RUN FOR COLD CLIMATES

THE END IS NEAR!!!
RAPTORS AHEAD
CAUTION
“Ensure complete mediation.”
Ensuring Complete Mediation

• To secure access to some capability/resource, construct a **reference monitor**

• Single point through which all access must occur
 • E.g.: a network firewall

• Desired properties:
 • **Un-bypassable** (“complete mediation”)
 • **Tamper-proof** (is itself secure)
 • **Verifiable** (correct)
 • (Note, just restatements of what we want for TCBs)

• One subtle form of reference monitor flaw concerns **race conditions** ...
procedure withdrawal(w)
 // contact central server to get balance
 1. let b := balance
 2. if b < w, abort

Balance could have decreased at this point due to another action
 // contact server to set balance
 3. set balance := b - w

 4. dispense $w to user
public void buyItem(Account buyer, Item item) {
 if (item.cost > buyer.balance)
 return;
 buyer.possessions.put(item);
 buyer.possessionsUpdated();
 buyer.balance -= item.cost;
 buyer.balanceUpdated();
}

Q: Where can TOCTOU happen here?

A: Both threads of execution pass the if statement but are before the subtraction
“Division of trust.”
- reduce the trust in each party
Missile silo, it has two launch officers who must both agree.
Summary: security principles

• Know your threat model
• Security is economics
• Don’t rely on security through obscurity
• Least privilege
 • helpful tool here is sandboxing
• Defense in depth
• Consider human factors
• Make your system easy to use in a secure way
• Defense in depth
• Design security in from the start
• Ensure complete mediation
• Division of trust