why does this suck?

- y-axis unlabeled
- y-axis at poor scale
- needless use of 3D bar chart
- color used instead of x-axis labels
- x-axis label should be the title, and be more informative
 - for example, what metric? what year?
- giant face on left side
 - distracting by engaging human face perception
 - distracting by creating figure/ground separation illusion
- chart junk
 - useless image of librarian, tacky word art
- missing context
 - nothing to compare to! are these numbers good or bad?
 - how do they compare to previous quarters/years or to the competition?

some of the reasons it sucks

Information Visualization
Ryan Aipperspach (slides from Jeffrey Heer)
April 19, 2006

overview
- why infovis?
- review some basics
- examples deconstructed
- modeling visualizations

basic problem
We live in a new ecology.
web ecologies

1 new server every 2 seconds
7.5 new pages per second

scientific journals

Journals/person increases 10X every 50 years

innate human capacity

attentional processes

“What information consumes is rather obvious: it consumes the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a need to allocate that attention efficiently among the overabundance of information sources that might consume it.”

~Herb Simon
as quoted by Hal Varian
Scientific American September 1995

human-information interaction

- The real design problem is not increased access to information, but greater efficiency in finding useful information.
- Increasing the rate at which people can find and use relevant information improves human intelligence.

information visualization

- Leverage highly-developed human visual system to achieve rapid uptake of abstract information.
augmented cognition

- Using external artifacts to amplify human mental abilities.
 - Classic examples: pen and paper, slide rules
 - A primary goal of Information visualization
- In the case of InfoVis, how?
 - Increased resources
 - Reduced search
 - Enhanced pattern recognition
 - Perceptual inference
 - Perceptual monitoring
 - Manipulable medium

Visualization Success Story

Mystery: what is causing a cholera epidemic in London in 1854?

Illustration of John Snow’s deduction that a cholera epidemic was caused by a bad water pump, circa 1854.

Horizontal lines indicate location of deaths.

Overview

- why infovis?
- review some basics
- examples deconstructed
- modeling visualizations

Basic types of data elements

- Nominal
 - (no inherent order)
 - city names, categories, ...
- Ordinal
 - (ordered, but not at measurable intervals)
 - first, second, third, ...
 - cold, warm, hot
 - Mon, Tue, Wed, Thu ...
- Quantitative
 - (ordered, with measurable distances)
 - real numbers
- Relations
 - (relations between elements)
 - Networks
 - hierarchical relationships (parent/child)
basic types of visual encodings

- "Retinal" properties
 - spatial position (e.g., x-y axes)
 - size
 - shape
 - color
 - orientation
 - texture

- "Gestalt" properties
 - connectivity
 - grouping (e.g., enclosure)

- Animation
 - view transitions
 - animated elements

sensemaking tasks [Card et al]

- Information foraging
 - Collect information of interest

- Search for schema
 - Identify relevant dimensions of data
 - Instantiate schema (with data!)
 - Schema == knowledge representation
 - Organize / codify information

- Analysis (problem solving)
 - Analyze and filter data, answer questions
 - Refine schema as needed

- Record / communicate
 - Make a decision, take action, or communicate results

interactive tasks [Shneiderman]

- Overview
 - Get an overview of the collection

- Zoom
 - Zoom in on items of interest

- Filter
 - Remove uninteresting items

- Details on demand
 - Select items and get details

- Relate
 - View relationships between items

- History
 - Keep a history of actions for undo, replay, refinement

- Extract
 - Make subcollections

overview

- why infovis?
- review some basics
- examples deconstructed
- modeling visualizations

data graphics (Playfair, ca.1780)

- x-axis: year (quantitative)
- y-axis: currency (quantitative)
- color: imports/exports (nominal)
- color: positive/negative (nominal/ordinal)
characterizing the visualization

- x-axis: year of release (quantitative)
- y-axis: popularity (quantitative)
- color: genre (nominal)
- dynamic query filters
 - title (nominal)
 - actor (nominal)
 - actress (nominal)
 - director (nominal)
 - length (quantitative)
 - rating (ordinal)

issue: multi-dimensional data

- FilmFinder visualizes 3 dimensions at a time, using 2 spatial dimensions and color
- can we effectively see more dimensions simultaneously?

principle: interactivity

- turn visual analysis into a real-time iterative process
- explore various hypotheses or interests
- filter to hone in on data of interest
- get details on demand

perspective wall
perspective wall

- Video online at: http://www.sims.berkeley.edu/courses/is247/f05/movies/PerspectiveWall.mov

classifying the visualization

- x-axis: time of file access (quantitative)
- y-axis: file type (nominal)
- use of 3D perspective to
 - fit more data in the display
 - de-emphasize peripheral data

principle: focus+context

- Keep all the data in view
- Show data of interest in high detail
- Show peripheral data in lower detail
- Often achieved through perspective or visual distortion

Reingold-Tilford Layout

Top-down layout
Uses separate dimensions for breadth and depth

TreeMaps

Space-filling technique that divides space recursively
Segments space according to 'size' of children nodes

cone trees
cone trees

- Video online at: http://www.sims.berkeley.edu/courses/is247/f05/movies/ConeTree.mov

characterizing the visualization

- x-axis: tree depth (hierarchical)
- y-axis / z-axis: arrangement of sibling / cousin nodes (hierarchical)
- connectivity: parent-child relationships (hierarchical)
- animation: perform view transition
- lighting: shadow provides flattened 2D view of structure

principle: animation

- depicts change over time
- invaluable for view transitions
- can communicate change, even on periphery of vision (eyes are very sensitive to motion)
- existing debate about the efficacy of animation (depends on usage)

principle: 3D

- 2D or not 2D? Actually quite controversial!
- Though “cool”, 3D can present problems with occlusion and navigation (and even sex/gender issues arise)
- Most visualizations stay in the 2D or 2.5D
 - Perspective Wall: 3D perspective, 2D interaction

a re-design: doi trees

characterizing the visualization

- similar to cone-tree, but flattened
- color: selection/focus status of nodes (nominal)
- increased information density [Tufte]
- curved edges create funnel effect
 - allows greater y-separation of parents and children
- more focus+context
 - only show selected, expanded subtrees
 - collapsed subtrees replaced with a graphic, roughly indicating subtree size
 - if too many siblings, aggregate to keep legible
network visualization

characterizing the visualization
- angle: longitude (quantitative)
- radius: number of connections (quantitative)
- color: number of connections (quantitative)
 - color spectrum moving from cool to hot colors
- color: continents (nominal/ordinal)
 - category colors along periphery

principles
- redundant coding
 - in this case radius and color
 - reinforce data of interest
- design decision can obscure data
 - network sparsity in Africa is masked by European networks

more video examples
- Video online at:
 http://www.sims.berkeley.edu/courses/is247/f05/movies/prefuse.avi
- Shows selected applications built using the prefuse visualization toolkit for writing 2D visualizations in Java.

overview
- why infovis?
- review some basics
- examples deconstructed
- modeling visualizations

infovis reference model

- data transformations
- visual mappings
- view transformations
reference model examples

- **Visual mappings**
 - Layout (assigning x,y position)
 - Size, Shape, Color, Font, etc...
- **View Transformations**
 - Navigation: Panning and Zooming
 - Animation
 - Visual Distortion (e.g., fisheye lens)

apply the model: cone trees

- **Raw Data:** File system directories
 - Data Transformations: Traverse file system subtree
- **Data Tables:** Parsed/extracted directory tree
 - Visual Mappings: Assign 3D coordinates to tree elements (layout), assign colors, fonts, set lighting.
- **Visual Structures:** 3D model of tree
 - View Transformations: Camera placement; animation between tree configurations
- **View:** Rendered, interactive visualization
- **Interaction:** Selection of new focus node

other examples

TreeMaps

- Space-filling technique that divides space recursively
- Segments space according to ‘size’ of children nodes

Table Lens

- Distortion Techniques
WebBook

Web Forager

Document Lens

Data Mountain

summary

- why infovis?
- review some basics
- examples deconstructed
- modeling visualizations

Supports document organization in a 2.5 dimensional environment.