Worksheet 8

Q1: Vectorization

Vectorize the following code:

```c
for(i = 0; i < M; i++){
}
```

Assume the base address of array A is held in x1, the base address of array B is held in x2, and the base address of array C is held in x3. The maximum vector length is held in x4. M is held in x5. Each array element is 4 bytes. You should not assume that M is an integer multiple of the maximum vector length.
Q2. Vectorization

How might the following code be vectorized? Clearly state any assumptions that you used for your answer for what the architecture provides, such as specific instructions, registers, etc.

```c
for (i=0; i < N; i++){
    if(A[i+1])
}
```

Q3. Lane Tradeoff

Suppose we want to add two vector registers (add v1, v2, v3), followed by another addition to different registers (add v4, v5, v6). The next instruction after that uses a different functional unit. VLR=MAXVL=32. What would you choose between an ALU with 8 lanes and 2 cycles dead time, and an ALU with 16 lanes and 8 cycles dead time?
Q4. Vector vs Packed-SIMD

What are distinguishing features between a vector architecture and a packed-SIMD architecture? List advantages of each.

Distinguishing feature:

Vector architecture:

Packed-SIMD:

Q5. Vector vs GPU

What are some distinguishing features between a vector and GPU (SIMT) architectures?

Vector:

SIMT: