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Last	Time	in	Lecture	17	

GPU	architecture	
§  Evolved	from	graphics-only,	to	more	general-purpose	
compuAng	

§ GPUs	programmed	as	aBached	accelerators,	with	
soDware	required	to	separate	GPU	from	CPU	code,	move	
memory	

§ Many	cores,	each	with	many	lanes	
–  thousands	of	lanes	on	current	high-end		GPUs	

§  SIMT	model	has	hardware	management	of	condiAonal	
execuAon	
–  code	wriBen	as	scalar	code	with	branches,	executed	as	vector	code	with	
predicaAon	
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Bus	Management	

§ A	“bus”	is	a	collecAon	of	shared	wires	
–  Newer	“busses”	use	point-point	links	

§ Only	one	“master”	can	iniAate	a	transacAon	by	driving	wires	at	
any	one	Ame	

§ MulAple	“slaves”	can	observe	and	condiAonally	respond	to	the	
transacAon	on	the	wires	

–  slaves	decode	address	on	bus	to	see	if	they	should	respond	(memory	is	most	common	slave)	
–  some	masters	can	also	act	as	slaves	

§ Masters	arbitrate	for	access	with	requests	to	bus	“controller”	
–  Some	busses	only	allow	one	master	(in	which	case,	it’s	also	the	controller)	
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Shared-Memory	MulCprocessor	
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Snoopy	Cache,	Goodman	1983	

§  Idea:	Have	cache	watch	(or	snoop	upon)	other	memory	
transacAons,	and	then	“do	the	right	thing”	

§  Snoopy	cache	tags	are	dual-ported	

5	

	Proc.		

	Cache	

Snoopy	read	port	
aBached	to	Memory	
Bus	

	Data	
(lines)	

Tags	and	
				State	

A	

D	

R/W		

Used	to	drive	Memory	Bus	
when	Cache	is	Bus	Master	

A	

R/W		



Snoopy	Cache-Coherence	Protocols	

§ Write	miss:			
–  the	address	is	invalidated	in	all	other	caches	before	the	
write	is	performed	

§ Read	miss:			
–  if	a	dirty	copy	is	found	in	some	cache,	a	write-back	is	
performed	before	the	memory	is	read			
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Cache	State-TransiCon	Diagram	
The	MSI	protocol	
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Two-Processor	Example	
(Reading	and	wriCng	the	same	cache	line)	
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ObservaCon	

§  If	a	line	is	in	the	M	state	then	no	other	cache	can	have	a	
copy	of	the	line!	

§  	Memory	stays	coherent,	mulAple	differing	copies	cannot	
exist	
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MESI:	An	Enhanced	MSI	protocol	
	increased	performance	for	private	data	
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OpCmized	Snoop	with	Level-2	Caches	

§ Processors	oDen	have	two-level	caches	
–  	small	L1,	large	L2	(usually	both	on	chip	now)	

§ Inclusion	property:	entries	in	L1	must	be	in	L2	
–  invalidaAon	in	L2	⇒		invalidaAon	in	L1	

§ Snooping	on	L2	does	not	affect	CPU-L1	bandwidth	
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IntervenCon	
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When	a	read-miss	for	A	occurs	in	cache-2,		
a	read	request	for	A	is	placed	on	the	bus	

• 	Cache-1	needs	to	supply	&	change	its	state	to	shared	
• 	The	memory	may	respond	to	the	request	also!	

Does	memory	know	it	has	stale	data?	
Cache-1	needs	to	intervene	through	memory	controller	to	
supply	correct	data	to	cache-2	

cache-1	A 	200	

CPU-Memory	bus	

CPU-1	 CPU-2	

cache-2	

memory	(stale	data)	A 	100	



False	Sharing	
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state					line	addr			data0 	data1								...												dataN			

A	cache	line	contains	more	than	one	word	
	
Cache-coherence	is	done	at	the	line-level	and	not	
word-level	
	
Suppose	M1	writes	wordi	and	M2	writes	wordk	and	
both	words	have	the	same	line	address.	
	
What	can	happen?	



Performance	of	
Symmetric	MulCprocessors	(SMPs)	

Cache	performance	is	combinaAon	of:	
§ Uniprocessor	cache	miss	traffic	
§ Traffic	caused	by	communicaAon		

– Results	in	invalidaAons	and	subsequent	cache	misses	

§ Coherence	misses	
– SomeAmes	called	a	CommunicaAon	miss	
– 4th	C	of	cache	misses	along	with	Compulsory,	
Capacity,	&	Conflict.	
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Coherency	Misses	

§ True	sharing	misses	arise	from	the	
communicaAon	of	data	through	the	cache	
coherence	mechanism	
–  Invalidates	due	to	1st	write	to	shared	line	
–  Reads	by	another	CPU	of	modified	line	in	different	cache	
–  Miss	would	sAll	occur	if	line	size	were	1	word	

§ False	sharing	misses	when	a	line	is	invalidated	
because	some	word	in	the	line,	other	than	the	
one	being	read,	is	wriBen	into	
–  InvalidaAon	does	not	cause	a	new	value	to	be	communicated,	but	
only	causes	an	extra	cache	miss	

–  Line	is	shared,	but	no	word	in	line	is	actually	shared	
	⇒	miss	would	not	occur	if	line	size	were	1	word	

15	



Example:	True	v.	False	Sharing	v.	Hit?	
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Time	 P1	 P2	 True,	False,	Hit?	Why?	
1	 Write	x1	

2	 Read	x2	

3	 Write	x1	

4	 Write	x2	

5	 Read	x2	

• 	Assume	x1	and	x2	in	same	cache	line.		
		P1	and	P2	both	read	x1	and	x2	before.	

True	miss;	invalidate	x1	in	P2	

False	miss;	x1	irrelevant	to	P2	

False	miss;	x1	irrelevant	to	P2	

True	miss;	x2	not	writeable	

True	miss;	invalidate	x2	in	P1	



MP	Performance	4-Processor	Commercial	Workload:	
OLTP,	Decision	Support	(Database),	Search	Engine	
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MP	Performance	2MiB	Cache	Commercial	Workload:	
OLTP,	Decision	Support	(Database),	Search	Engine	
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CS152	Administrivia	

§  Lab	4	due	Monday	April	9	
§ Midterm	2	in	class	Wednesday	April	11	

–  covers	lectures	10-17,	plus	associated	problem	sets,	labs,	and	readings	
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CS252	

CS252	Administrivia	

§ Monday	April	9th	Project	Checkpoint,	4-5pm,	405	Soda	
–  Prepare	10-minute	presentaAon	on	current	status	

20	



Scaling	Snoopy/Broadcast	Coherence	
§ When	any	processor	gets	a	miss,	must	probe	every	other	cache	
§  Scaling	up	to	more	processors	limited	by:	

–  CommunicaAon	bandwidth	over	bus	
–  Snoop	bandwidth	into	tags	

§ Can	improve	bandwidth	by	using	mulAple	interleaved	buses	with	
interleaved	tag	banks	
–  E.g,	two	bits	of	address	pick	which	of	four	buses	and	four	tag	banks	to	use	
–	(e.g.,	bits	7:6	of	address	pick	bus/tag	bank,	bits	5:0	pick	byte	in	64-byte	
line)	

§ Buses	don’t	scale	to	large	number	of	connecAons,	so	can	use	
point-to-point	network	for	larger	number	of	nodes,	but	then	
limited	by	tag	bandwidth	when	broadcasAng	snoop	requests.	

§  Insight:	Most	snoops	fail	to	find	a	match!	

21	



Scalable	Approach:	Directories	

§ 	Every	memory	line	has	associated	directory	
informaAon	
–  keeps	track	of	copies	of	cached	lines	and	their	states	
–  on	a	miss,	find	directory	entry,	look	it	up,	and	communicate	only	
with	the	nodes	that	have	copies	if	necessary	

–  in	scalable	networks,	communicaAon	with	directory	and	copies	is	
through	network	transacAons	

§ Many	alternaAves	for	organizing	directory	
informaAon	
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Directory	Cache	Protocol	
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§ AssumpAons:	Reliable	network,	FIFO	message	delivery	between	
any	given	source-desAnaAon	pair	
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Cache	States	

§ For	each	cache	line,	there	are	4	possible	states:	
– C-invalid	(=	Nothing):	The	accessed	data	is	not	resident	in	
the	cache.	

– C-shared	(=	Sh):	The	accessed	data	is	resident	in	the	cache,	
and	possibly	also	cached	at	other	sites.	The	data	in	memory	
is	valid.	

– C-modified	(=	Ex):	The	accessed	data	is	exclusively	resident	
in	this	cache,	and	has	been	modified.	Memory	does	not	
have	the	most	up-to-date	data.	

– C-transient	(=	Pending):	The	accessed	data	is	in	a	transient	
state	(for	example,	the	site	has	just	issued	a	protocol	
request,	but	has	not	received	the	corresponding	protocol	
reply).	
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Home	directory	states	

§ For	each	memory	line,	there	are	4	possible	states:	
– R(dir):	The	memory	line	is	shared	by	the	sites	specified	in	dir	
(dir	is	a	set	of	sites).	The	data	in	memory	is	valid	in	this	state.		
If	dir	is	empty	(i.e.,	dir	=	ε),	the	memory	line	is	not	cached	by	
any	site.	

– W(id):	The	memory	line	is	exclusively	cached	at	site	id,	and	has	
been	modified	at	that	site.	Memory	does	not	have	the	most	
up-to-date	data.	

– TR(dir):	The	memory	line	is	in	a	transient	state	waiAng	for	the	
acknowledgements	to	the	invalidaAon	requests	that	the	home	
site	has	issued.	

– TW(id):	The	memory	line	is	in	a	transient	state	waiAng	for	a	
line	exclusively	cached	at	site	id	(i.e.,	in	C-modified	state)	to	
make	the	memory	line	at	the	home	site	up-to-date.	
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Read	miss,	to	uncached	or	shared	line	
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Write	miss,	to	read	shared	line	
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Concurrency	Management	

§ Protocol	would	be	easy	to	design	if	only	one	
transacAon	in	flight	across	enAre	system	

§ But,	want	greater	throughput	and	don’t	want	to	
have	to	coordinate	across	enAre	system	

§ Great	complexity	in	managing	mulAple	
outstanding	concurrent	transacAons	to	cache	
lines	
–  Can	have	mulAple	requests	in	flight	to	same	cache	line!	
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