
CS	152	Computer	Architecture	and	Engineering	
CS252	Graduate	Computer	Architecture	

	
	Lecture	18	Cache	Coherence	

Krste	Asanovic	
Electrical	Engineering	and	Computer	Sciences	

University	of	California	at	Berkeley	
	

http://www.eecs.berkeley.edu/~krste
http://inst.eecs.berkeley.edu/~cs152

	
	

Last	Time	in	Lecture	17	

GPU	architecture	
§  Evolved	from	graphics-only,	to	more	general-purpose	
compuAng	

§ GPUs	programmed	as	aBached	accelerators,	with	
soDware	required	to	separate	GPU	from	CPU	code,	move	
memory	

§ Many	cores,	each	with	many	lanes	
–  thousands	of	lanes	on	current	high-end		GPUs	

§  SIMT	model	has	hardware	management	of	condiAonal	
execuAon	
–  code	wriBen	as	scalar	code	with	branches,	executed	as	vector	code	with	
predicaAon	

	 2	

Bus	Management	

§ A	“bus”	is	a	collecAon	of	shared	wires	
–  Newer	“busses”	use	point-point	links	

§ Only	one	“master”	can	iniAate	a	transacAon	by	driving	wires	at	
any	one	Ame	

§ MulAple	“slaves”	can	observe	and	condiAonally	respond	to	the	
transacAon	on	the	wires	

–  slaves	decode	address	on	bus	to	see	if	they	should	respond	(memory	is	most	common	slave)	
–  some	masters	can	also	act	as	slaves	

§ Masters	arbitrate	for	access	with	requests	to	bus	“controller”	
–  Some	busses	only	allow	one	master	(in	which	case,	it’s	also	the	controller)	

3	

Master 0 Master 1 Slave 0 Slave 1 Bus
Controller

Clock/Control	

Address	

Data	

Request	Grant	

Shared-Memory	MulCprocessor	

4	

CPU1	

			Use	snoopy	mechanism	to	keep	all	processors’	view	of	
memory	coherent	

Memory	
			Bus	

Main	
Memory	
(DRAM)	

DMA	

Snoopy	
Cache	

CPU2	
Snoopy	
Cache	

CPU3	
Snoopy	
Cache	

Disk	

DMA	 Network	

Bus	Control	

Snoopy	Cache,	Goodman	1983	

§  Idea:	Have	cache	watch	(or	snoop	upon)	other	memory	
transacAons,	and	then	“do	the	right	thing”	

§  Snoopy	cache	tags	are	dual-ported	

5	

	Proc.		

	Cache	

Snoopy	read	port	
aBached	to	Memory	
Bus	

	Data	
(lines)	

Tags	and	
				State	

A	

D	

R/W		

Used	to	drive	Memory	Bus	
when	Cache	is	Bus	Master	

A	

R/W		

Snoopy	Cache-Coherence	Protocols	

§ Write	miss:			
–  the	address	is	invalidated	in	all	other	caches	before	the	
write	is	performed	

§ Read	miss:			
–  if	a	dirty	copy	is	found	in	some	cache,	a	write-back	is	
performed	before	the	memory	is	read			

6	

Cache	State-TransiCon	Diagram	
The	MSI	protocol	

7	

M

S I

M: Modified
S: Shared
 I: Invalid

Each cache line has state bits

Address tag
state
 bits Write miss

(P1 gets line from memory)

Other processor
intent to write
(P1 writes back)

 Read miss
(P1 gets line from memory)

Other processor
intent to write

Read by any
 processor

P1 reads
or writes

Cache state in
processor P1

Other processor reads
(P1 writes back)

Two-Processor	Example	
(Reading	and	wriCng	the	same	cache	line)	

8	

M	

S	 I	

Write	miss	

	Read	
	miss	

P2	intent	to	write	

P2	reads,	
P1	writes	back	

P1	reads	
or	writes	

P2	intent	to	write	

P1	

M	

S	 I	

Write	miss	

	Read	
	miss	

P1	intent	to	write	

P1	reads,	
P2	writes	back	

P2	reads	
or	writes	

P1	intent	to	write	

P2	

P1	reads	
P1	writes	
P2	reads	
P2	writes	

P1	writes	
P2	writes	

P1	reads	

P1	writes	

ObservaCon	

§  If	a	line	is	in	the	M	state	then	no	other	cache	can	have	a	
copy	of	the	line!	

§  	Memory	stays	coherent,	mulAple	differing	copies	cannot	
exist	

9	

M

S I

Write miss

Other processor
intent to write

 Read
 miss

Other processor
intent to write

Read by any
 processor

P1 reads
or writes Other processor reads

P1 writes back

MESI:	An	Enhanced	MSI	protocol	
	increased	performance	for	private	data	

10	

M	 E	

S	 I	

M:	Modified	Exclusive	
E:	Exclusive	but	unmodified	
S:	Shared		
	I:	Invalid	

Each	cache	line	has	a	tag	

Address	tag	
state	
	bits	

Write	miss	

Other	processor	
intent	to	write	

Read	miss,	
shared	

Other	processor	
intent	to	write	

P1	write	

Read	by	any	
	processor	

Other	processor	reads	
P1	writes	back	

P1	read	
P1	write	
or	read	

Cache	state	in	
processor	P1	

P1	intent	to	
write	

Read	miss,	
not	shared	Other	

processor	
reads	

Other	processor	
intent	to	write,	P1	
writes	back	

OpCmized	Snoop	with	Level-2	Caches	

§ Processors	oDen	have	two-level	caches	
–  	small	L1,	large	L2	(usually	both	on	chip	now)	

§ Inclusion	property:	entries	in	L1	must	be	in	L2	
–  invalidaAon	in	L2	⇒		invalidaAon	in	L1	

§ Snooping	on	L2	does	not	affect	CPU-L1	bandwidth	

11	

Snooper	 Snooper	 Snooper	 Snooper	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

CPU	

L1	$	

L2	$	

IntervenCon	

12	

When	a	read-miss	for	A	occurs	in	cache-2,		
a	read	request	for	A	is	placed	on	the	bus	

• 	Cache-1	needs	to	supply	&	change	its	state	to	shared	
• 	The	memory	may	respond	to	the	request	also!	

Does	memory	know	it	has	stale	data?	
Cache-1	needs	to	intervene	through	memory	controller	to	
supply	correct	data	to	cache-2	

cache-1	A 	200	

CPU-Memory	bus	

CPU-1	 CPU-2	

cache-2	

memory	(stale	data)	A 	100	

False	Sharing	

13	

state					line	addr			data0 	data1								...												dataN			

A	cache	line	contains	more	than	one	word	
	
Cache-coherence	is	done	at	the	line-level	and	not	
word-level	
	
Suppose	M1	writes	wordi	and	M2	writes	wordk	and	
both	words	have	the	same	line	address.	
	
What	can	happen?	

Performance	of	
Symmetric	MulCprocessors	(SMPs)	

Cache	performance	is	combinaAon	of:	
§ Uniprocessor	cache	miss	traffic	
§ Traffic	caused	by	communicaAon		

– Results	in	invalidaAons	and	subsequent	cache	misses	

§ Coherence	misses	
– SomeAmes	called	a	CommunicaAon	miss	
– 4th	C	of	cache	misses	along	with	Compulsory,	
Capacity,	&	Conflict.	

14	

Coherency	Misses	

§ True	sharing	misses	arise	from	the	
communicaAon	of	data	through	the	cache	
coherence	mechanism	
–  Invalidates	due	to	1st	write	to	shared	line	
–  Reads	by	another	CPU	of	modified	line	in	different	cache	
–  Miss	would	sAll	occur	if	line	size	were	1	word	

§ False	sharing	misses	when	a	line	is	invalidated	
because	some	word	in	the	line,	other	than	the	
one	being	read,	is	wriBen	into	
–  InvalidaAon	does	not	cause	a	new	value	to	be	communicated,	but	
only	causes	an	extra	cache	miss	

–  Line	is	shared,	but	no	word	in	line	is	actually	shared	
	⇒	miss	would	not	occur	if	line	size	were	1	word	

15	

Example:	True	v.	False	Sharing	v.	Hit?	

16	

Time	 P1	 P2	 True,	False,	Hit?	Why?	
1	 Write	x1	

2	 Read	x2	

3	 Write	x1	

4	 Write	x2	

5	 Read	x2	

• 	Assume	x1	and	x2	in	same	cache	line.		
		P1	and	P2	both	read	x1	and	x2	before.	

True	miss;	invalidate	x1	in	P2	

False	miss;	x1	irrelevant	to	P2	

False	miss;	x1	irrelevant	to	P2	

True	miss;	x2	not	writeable	

True	miss;	invalidate	x2	in	P1	

MP	Performance	4-Processor	Commercial	Workload:	
OLTP,	Decision	Support	(Database),	Search	Engine	

17	

0
0.25
0.5

0.75

1
1.25
1.5

1.75
2

2.25

2.5
2.75

3
3.25

1 MB 2 MB 4 MB 8 MB

Cache size

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Capacity/Conflict
Cold
False Sharing
True Sharing

• 	Uniprocessor	cache	
misses	
improve	with	
cache	size	increase	
(InstrucAon,	Capacity/
Conflict,	Compulsory)		

• 	True	sharing	and	
false	sharing	
unchanged	going	
from	1	MB	to	8	MB	
(L3	cache)	
	
	

MP	Performance	2MiB	Cache	Commercial	Workload:	
OLTP,	Decision	Support	(Database),	Search	Engine	

18	

0

0.5

1

1.5

2

2.5

3

1 2 4 6 8
Processor count

M
em

or
y

cy
cl

es
 p

er
 in

st
ru

ct
io

n

Instruction
Conflict/Capacity
Cold
False Sharing
True Sharing

• 	True	sharing,	
false	sharing	
increase	going	
from	1	to	8	CPUs	

CS152	Administrivia	

§  Lab	4	due	Monday	April	9	
§ Midterm	2	in	class	Wednesday	April	11	

–  covers	lectures	10-17,	plus	associated	problem	sets,	labs,	and	readings	

19	

CS252	

CS252	Administrivia	

§ Monday	April	9th	Project	Checkpoint,	4-5pm,	405	Soda	
–  Prepare	10-minute	presentaAon	on	current	status	

20	

Scaling	Snoopy/Broadcast	Coherence	
§ When	any	processor	gets	a	miss,	must	probe	every	other	cache	
§  Scaling	up	to	more	processors	limited	by:	

–  CommunicaAon	bandwidth	over	bus	
–  Snoop	bandwidth	into	tags	

§ Can	improve	bandwidth	by	using	mulAple	interleaved	buses	with	
interleaved	tag	banks	
–  E.g,	two	bits	of	address	pick	which	of	four	buses	and	four	tag	banks	to	use	
–	(e.g.,	bits	7:6	of	address	pick	bus/tag	bank,	bits	5:0	pick	byte	in	64-byte	
line)	

§ Buses	don’t	scale	to	large	number	of	connecAons,	so	can	use	
point-to-point	network	for	larger	number	of	nodes,	but	then	
limited	by	tag	bandwidth	when	broadcasAng	snoop	requests.	

§  Insight:	Most	snoops	fail	to	find	a	match!	

21	

Scalable	Approach:	Directories	

§ 	Every	memory	line	has	associated	directory	
informaAon	
–  keeps	track	of	copies	of	cached	lines	and	their	states	
–  on	a	miss,	find	directory	entry,	look	it	up,	and	communicate	only	
with	the	nodes	that	have	copies	if	necessary	

–  in	scalable	networks,	communicaAon	with	directory	and	copies	is	
through	network	transacAons	

§ Many	alternaAves	for	organizing	directory	
informaAon	

22	

Directory	Cache	Protocol	

23	

§ AssumpAons:	Reliable	network,	FIFO	message	delivery	between	
any	given	source-desAnaAon	pair	

CPU

Cache

Interconnection Network

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Cache

Directory
Controller

DRAM Bank

Directory
Controller

DRAM Bank

Data Tag Stat.

Each line in cache has
state field plus tag

Data Stat. Directry

Each line in memory
has state field plus bit
vector directory with
one bit per processor

Cache	States	

§ For	each	cache	line,	there	are	4	possible	states:	
– C-invalid	(=	Nothing):	The	accessed	data	is	not	resident	in	
the	cache.	

– C-shared	(=	Sh):	The	accessed	data	is	resident	in	the	cache,	
and	possibly	also	cached	at	other	sites.	The	data	in	memory	
is	valid.	

– C-modified	(=	Ex):	The	accessed	data	is	exclusively	resident	
in	this	cache,	and	has	been	modified.	Memory	does	not	
have	the	most	up-to-date	data.	

– C-transient	(=	Pending):	The	accessed	data	is	in	a	transient	
state	(for	example,	the	site	has	just	issued	a	protocol	
request,	but	has	not	received	the	corresponding	protocol	
reply).	

24	

Home	directory	states	

§ For	each	memory	line,	there	are	4	possible	states:	
– R(dir):	The	memory	line	is	shared	by	the	sites	specified	in	dir	
(dir	is	a	set	of	sites).	The	data	in	memory	is	valid	in	this	state.		
If	dir	is	empty	(i.e.,	dir	=	ε),	the	memory	line	is	not	cached	by	
any	site.	

– W(id):	The	memory	line	is	exclusively	cached	at	site	id,	and	has	
been	modified	at	that	site.	Memory	does	not	have	the	most	
up-to-date	data.	

– TR(dir):	The	memory	line	is	in	a	transient	state	waiAng	for	the	
acknowledgements	to	the	invalidaAon	requests	that	the	home	
site	has	issued.	

– TW(id):	The	memory	line	is	in	a	transient	state	waiAng	for	a	
line	exclusively	cached	at	site	id	(i.e.,	in	C-modified	state)	to	
make	the	memory	line	at	the	home	site	up-to-date.	

25	

Read	miss,	to	uncached	or	shared	line	

26	

Directory
Controller

DRAM Bank

CPU

Cache

1
Load request at head of

CPU->Cache queue.

2 Load misses in cache.

3 Send ShReq
message to directory.

4
Message received at
directory controller.

5
Access state and directory for line.
Line’s state is R, with zero or more

sharers.

6
Update directory by
setting bit for new
processor sharer.

7
Send ShRep message with

contents of cache line.

8 ShRep arrives at cache.

9

Update cache tag and data and
return load data to CPU.

Interconnection Network

Write	miss,	to	read	shared	line	

27	

Directory
Controller

DRAM Bank

CPU

Cache

1
Store request at head of

CPU->Cache queue.

2 Store misses in cache.

3 Send ExReq message
to directory.

4
ExReq message received

at directory controller.

5
Access state and directory for

line. Line’s state is R, with some
set of sharers.

6 Send one InvReq
message to each sharer.

11

ExRep arrives
at cache

12

Update cache tag and
data, then store data

from CPU

Interconnection Network

CPU

Cache

7

InvReq arrives
at cache. 8

Invalidate
cache line.

Send InvRep
to directory.

9 InvRep received.
Clear down sharer bit.

10
When no more sharers,
send ExRep to cache.

Multiple sharers

CPU

Cache

CPU

Cache

Concurrency	Management	

§ Protocol	would	be	easy	to	design	if	only	one	
transacAon	in	flight	across	enAre	system	

§ But,	want	greater	throughput	and	don’t	want	to	
have	to	coordinate	across	enAre	system	

§ Great	complexity	in	managing	mulAple	
outstanding	concurrent	transacAons	to	cache	
lines	
–  Can	have	mulAple	requests	in	flight	to	same	cache	line!	

28	

Acknowledgements	

§  This	course	is	partly	inspired	by	previous	MIT	6.823	and	
Berkeley	CS252	computer	architecture	courses	created	by	
my	collaborators	and	colleagues:	
–  Arvind	(MIT)	
–  Joel	Emer	(Intel/MIT)	
–  James	Hoe	(CMU)	
–  John	Kubiatowicz	(UCB)	
–  David	PaBerson	(UCB)	

29	

