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Last	Time	in	Lecture	2	

§ Microcoding,	an	effec?ve	technique	to	manage	control	unit	
complexity,	invented	in	era	when	logic	(tubes),	main	memory	
(magne?c	core),	and	ROM	(diodes)	used	different	
technologies	

§ Difference	between	ROM	and	RAM	speed	mo?vated	
addi?onal	complex	instruc?ons	

§  Technology	advances	leading	to	fast	SRAM	made	technology	
assump?ons	invalid	

§ Complex	instruc?ons	sets	impede	parallel	and	pipelined	
implementa?ons	

§  Load/store,	register-rich	ISAs	(pioneered	by	Cray,	popularized	
by	RISC)	perform	bePer	in	new	VLSI	technology	
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“Iron	Law”	of	Processor	Performance	

§  Instruc?ons	per	program	depends	on	source	code,	
compiler	technology,	and	ISA	

§ Cycles	per	instruc?ons	(CPI)	depends	on	ISA	and	
µarchitecture	

§  Time	per	cycle	depends	upon	the	µarchitecture	and	base	
technology	
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						Time					=			Instruc?ons									Cycles												Time	
			Program									Program					*		Instruc?on			*		Cycle	

Microarchitecture	 CPI	 cycle	?me	
Microcoded	 >1	 short	
Single-cycle	unpipelined	 1	 long	
Pipelined	 1	 short	



Memory	EXecute	Decode	Fetch	

Classic	5-Stage	RISC	Pipeline	
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CPI	Examples	
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Time	

Inst	3	

7	cycles	

Inst	1	 Inst	2	

5	cycles	 10	cycles	
Microcoded	machine	

3	instruc?ons,	22	cycles,	CPI=7.33	
Unpipelined	machine	

3	instruc?ons,	3	cycles,	CPI=1	

Inst	1	 Inst	2	 Inst	3	

Pipelined	machine	

3	instruc?ons,	3	cycles,	CPI=1	
Inst	1	

Inst	2	
Inst	3	 5-stage	pipeline	CPI≠5!!!	



InstrucNons	interact	with	each	other	in	pipeline	

§ An	instruc?on	in	the	pipeline	may	need	a	
resource	being	used	by	another	instruc?on	in	the	
pipeline	à	structural	hazard	

	

§ An	instruc?on	may	depend	on	something	
produced	by	an	earlier	instruc?on	
– Dependence	may	be	for	a	data	value		

	à	data	hazard	
– Dependence	may	be	for	the	next	instruc?on’s	address	

	à	control	hazard	(branches,	excep?ons)	

§ Handling	hazards	generally	introduces	bubbles	into	
pipeline	and	reduces	ideal	CPI	>	1	
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Pipeline	CPI	Examples	
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Time	

3	instruc?ons	finish	in	3	cycles	
CPI	=	3/3	=1	

Inst	1	
Inst	2	

Inst	3	

3	instruc?ons	finish	in	4	cycles	
CPI	=	4/3	=	1.33	

Inst	1	
Inst	2	

Inst	3	
Bubble	

Measure	from	when	first	instruc?on	finishes	
to	when	last	instruc?on	in	sequence	finishes.	

3	instruc?ons	finish	in	5cycles	
CPI	=	5/3	=	1.67	

Inst	1	

Inst	2	
Inst	3	

Bubble	1	

Bubble	2	
Inst	3	



Resolving	Structural	Hazards	

§ Structural	hazard	occurs	when	two	instruc?ons	
need	same	hardware	resource	at	same	?me	
–  Can	resolve	in	hardware	by	stalling	newer	instruc?on	?ll	older	
instruc?on	finished	with	resource	

§ A	structural	hazard	can	always	be	avoided	by	
adding	more	hardware	to	design	
–  E.g.,	if	two	instruc?ons	both	need	a	port	to	memory	at	same	
?me,	could	avoid	hazard	by	adding	second	port	to	memory	

§ Classic	RISC	5-stage	integer	pipeline	has	no	
structural	hazards	by	design	
–  Many	RISC	implementa?ons	have	structural	hazards	on	mul?-
cycle	units	such	as	mul?pliers,	dividers,	floa?ng-point	units,	etc.,	
and	can	have	on	register	writeback	ports	
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Types	of	Data	Hazards		
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Consider	execu?ng	a	sequence	of	register-register	
instruc?ons	of	type:		

	 	rk		←  ri		op		rj		
Data-dependence	

r3		←		r1	op	r2	 	Read-ager-Write			
r5		←		r3	op	r4 	(RAW)	hazard	

An?-dependence	
r3		←		r1	op	r2 	Write-ager-Read		
r1		←		r4	op	r5 	(WAR)	hazard	

Output-dependence	
r3		←		r1	op	r2		 	Write-ager-Write		
r3		←		r6	op	r7			 	(WAW)	hazard	



Three	Strategies	for	Data	Hazards	

§ Interlock	
– Wait	for	hazard	to	clear	by	holding	dependent	
instruc?on	in	issue	stage	

§ Bypass	
– Resolve	hazard	earlier	by	bypassing	value	as	soon	as	
available	

§ Speculate	
– Guess	on	value,	correct	if	wrong	
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Interlocking	Versus	Bypassing	

11	

add x1, x3, x5 
sub x2, x1, x4 

F	 add x1, x3, x5 D	

F	

X	

D	

F	

sub x2, x1, x4 

W	

M	

X	 bubble	

F	

D	

W	

X	 M	 W	

M	 W	

W	

M	

D	

X	 bubble	

M	

X	 bubble	

D	

F	

Instruc?on	interlocked	
in	decode	stage	

F	 D	 X	 M	 W	 add x1, x3, x5 

F	 D	 X	 M	 W	 sub x2, x1, x4 

Bypass	around	ALU	
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Memory	EXecute	Decode	Fetch	

Example	Bypass	Path	
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Memory	EXecute	Decode	Fetch	

Fully	Bypassed	Data	Path	

13	

Re
gi
st
er
s	

AL
U
	B	

A	

Data	
Cache	

PC
	 Instruc?on	

Cache	

St
or
e	

Im
m	

In
st
.	R

eg
ist
er	

Writeback	

F	 D	 X	 M	 W	
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F	 D	 X	 M	 W	
[	Assumes	data	wriEen	to	registers	
in	a	W	cycle	is	readable	in	parallel	
D	cycle	(doEed	line).	Extra	write	
data	register	and	bypass	paths	
required	if	this	is	not	possible.	]	



Value	SpeculaNon	for	RAW	Data	Hazards		

§ Rather	than	wait	for	value,	can	guess	value!	

§ So	far,	only	effec?ve	in	certain	limited	cases:	
–  Branch	predic?on	
–  Stack	pointer	updates	
–  Memory	address	disambigua?on	
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Control	Hazards	

What	do	we	need	to	calculate	next	PC?	
	
§ For	Uncondi?onal	Jumps	

–  	Opcode,	PC,	and	offset	

§ For	Jump	Register	
– Opcode,	Register	value,	and	offset	

§ For	Condi?onal	Branches	
– Opcode,	Register	(for	condi?on),	PC	and	offset	

§ For	all	other	instruc?ons	
– Opcode	and	PC	(	and	have	to	know	it’s	not	one	of	above	)	
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Memory	EXecute	Decode	Fetch	

Control	flow	informaNon	in	pipeline	
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EXecute	Decode	Fetch	

RISC-V	UncondiNonal	PC-RelaNve	Jumps	
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Pipelining	for	UncondiNonal	PC-RelaNve	
Jumps	
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Branch	Delay	Slots	
§  Early	RISCs	adopted	idea	from	pipelined	microcode	
engines,	and	changed	ISA	seman?cs	so	instruc?on	aRer	
branch/jump	is	always	executed	before	control	flow	
change	occurs:	
0x100 j target 
0x104 add x1, x2, x3 // Executed before target 
… 
0x205 target: xori x1, x1, 7 

§  Sogware	has	to	fill	delay	slot	with	useful	work,	or	fill	with	
explicit	NOP	instruc?on	
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Post-1990	RISC	ISAs	don’t	have	delay	slots	

§ Encodes	microarchitectural	detail	into	ISA	
–  c.f.	IBM	650	drum	layout	

§ Performance	issues	
–  Increased	I-cache	misses	from	NOPs	in	unused	delay	slots	
–  I-cache	miss	on	delay	slot	causes	machine	to	wait,	even	if	delay	
slot	is	a	NOP	

§ Complicates	more	advanced	microarchitectures	
–  Consider	30-stage	pipeline	with	four-instruc?on-per-cycle	issue	

§ BePer	branch	predic?on	reduced	need	
–  Branch	predic?on	in	later	lecture	
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EXecute	Decode	Fetch	

RISC-V	CondiNonal	Branches	
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Pipelining	for	CondiNonal	Branches	
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Pipelining	for	Jump	Register	

§ Register	value	obtained	in	execute	stage	
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Why	instrucNon	may	not	be	dispatched	
every	cycle	in	classic	5-stage	pipeline	(CPI>1)	

§  Full	bypassing	may	be	too	expensive	to	implement	
–  typically	all	frequently	used	paths	are	provided	
–  some	infrequently	used	bypass	paths	may	increase	cycle	?me	

and	counteract	the	benefit	of	reducing	CPI	

§  	Loads	have	two-cycle	latency	
–  Instruc?on	ager	load	cannot	use	load	result	
–  MIPS-I	ISA	defined	load	delay	slots,	a	sogware-visible	pipeline	

hazard	(compiler	schedules	independent	instruc?on	or	inserts	
NOP	to	avoid	hazard).	Removed	in	MIPS-II	(pipeline	interlocks	
added	in	hardware)	
•  MIPS:“Microprocessor	without	Interlocked	Pipeline	Stages”	

§  	Jumps/Condi?onal	branches	may	cause	bubbles	
–  kill	following	instruc?on(s)	if	no	delay	slots	
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Machines	with	soRware-visible	delay	slots	may	execute	significant	
number	of	NOP	instruc?ons	inserted	by	the	compiler.	
NOPs	reduce	CPI,	but	increase	instruc?ons/program!	



CS152	Administrivia	

§  PS	1	is	posted	
§  PS	1	is	due	at	start	of	class	on	Monday	Feb	5	

§  Lab	1	out	on	Friday	
§  Lab	1	overview	in	Sec?on	Friday	2-4pm,	

–  DIS	101	3113	Etcheverry	
–  DIS	102	310	Soda	
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CS252	Administrivia	

§ CS252	discussions	grading	policy	
–  We’ll	ignore	your	two	lowest	scores	in	grading,	which	includes	absences	
–  Send	in	summary	even	if	you	can’t	aPend	discussion	

§ CS252	Piazza	class	has	been	created	
–  Sign	up	for	this	as	well	as	CS152	Piazza	

§  Each	CS252	paper	has	dedicated	thread	
–  Post	your	response	as	private	note	to	instructors	
–  Due	6AM	Monday	before	Monday	discussion	sec?on	
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Traps	and	Interrupts	

In	class,	we’ll	use	following	terminology	
§ Excep&on:	An	unusual	internal	event	caused	by	
program	during	execu?on	
–  E.g.,	page	fault,	arithme?c	underflow	

§ Trap:	Forced	transfer	of	control	to	supervisor	
caused	by	excep?on	
–  Not	all	excep?ons	cause	traps	(c.f.	IEEE	754	floa?ng-point	
standard)	

§ Interrupt:	An	external	event	outside	of	running	
program,	which	causes	transfer	of	control	to	
supervisor	

§ Traps	and	interrupts	usually	handled	by	same	
pipeline	mechanism	
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History	of	ExcepNon	Handling	

§ (Analy?cal	Engine	had	overflow	excep?ons)	
§ First	system	with	traps	was	Univac-I,	1951	

–  Arithme?c	overflow	would	either	
•  1.	trigger	the	execu?on	a	two-instruc?on	fix-up	rou?ne	at	
address	0,	or	

•  2.	at	the	programmer's	op?on,	cause	the	computer	to	stop	
–  Later	Univac	1103,	1955,	modified	to	add	external	interrupts	

•  Used	to	gather	real-?me	wind	tunnel	data	

§ First	system	with	I/O	interrupts	was	DYSEAC,	1954	
–  Had	two	program	counters,	and	I/O	signal	caused	switch	between	
two	PCs	

–  Also,	first	system	with	DMA	(direct	memory	access	by	I/O	device)	
–  And,	first	mobile	computer	(two	tractor	trailers,	12	tons	+	8	tons)	
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DYSEAC,	first	mobile	computer!	
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•  Carried	in	two	tractor	trailers,	12	tons	+	8	tons	
•  Built	for	US	Army	Signal	Corps	

[Courtesy	Mark	Smotherman]	



Asynchronous	Interrupts	

§ An	I/O	device	requests	aPen?on	by	asser?ng	one	
of	the	priori?zed	interrupt	request	lines	

§ When	the	processor	decides	to	process	the	
interrupt		
–  It	stops	the	current	program	at	instruc?on	Ii	,	
comple?ng	all	the	instruc?ons	up	to	Ii-1		(precise	
interrupt)	

–  It	saves	the	PC	of	instruc?on	Ii	in	a	special	register	(EPC)	
–  It	disables	interrupts	and	transfers	control	to	a	
designated	interrupt	handler	running	in	supervisor	mode	
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Interrupts:	
altering	the	normal	flow	of	control	
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Ii-1	 HI1	

HI2	

HIn	

Ii	

Ii+1	

program	
interrupt		
handler	

An	external	or	internal	event		that	needs	to	be	processed	by	another	(system)	
program.	The	event	is	usually	unexpected	or	rare	from	program’s	point	of	
view.		



Interrupt	Handler	

§ Saves	EPC	before	enabling	interrupts	to	allow	
nested	interrupts	⇒				
–  need	an	instruc?on	to	move	EPC	into	GPRs		
–  need	a	way	to	mask	further	interrupts	at	least	un?l	EPC	can	be	
saved	

§ Needs	to	read	a	status	register	that	indicates	the	
cause	of	the	interrupt	

§ Uses	a	special	indirect	jump	instruc?on	ERET	
(return-from-environment)	which	
–  enables	interrupts	
–  restores	the	processor	to	the	user	mode	
–  restores	hardware	status	and	control	state	
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Synchronous	Trap	

§ A	synchronous	trap	is	caused	by	an	excep?on	on	a	
par?cular	instruc?on	

§ In	general,	the	instruc?on	cannot	be	completed	
and	needs	to	be	restarted	ager	the	excep?on	has	
been	handled	
–  requires	undoing	the	effect	of	one	or	more	par?ally	
executed	instruc?ons	

§ In	the	case	of	a	system	call	trap,	the	instruc?on	is	
considered	to	have	been	completed			
– a	special	jump	instruc?on	involving	a	change	to	a	
privileged	mode	
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ExcepNon	Handling	5-Stage	Pipeline	
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§ How	to	handle	mul?ple	simultaneous	excep?ons	in	
different	pipeline	stages?	

§ How	and	where	to	handle	external	asynchronous	
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ExcepNon	Handling	5-Stage	Pipeline	
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ExcepNon	Handling	5-Stage	Pipeline	

§ Hold	excep?on	flags	in	pipeline	un?l	commit	point	
(M	stage)	

§ Excep?ons	in	earlier	pipe	stages	override	later	
excep?ons	for	a	given	instruc?on	

§ Inject	external	interrupts	at	commit	point	
(override	others)	

§ If	excep?on	at	commit:	update	Cause	and	EPC	
registers,	kill	all	stages,	inject	handler	PC	into	
fetch	stage	
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SpeculaNng	on	ExcepNons	

§ Predic?on	mechanism	
–  Excep?ons	are	rare,	so	simply	predic?ng	no	excep?ons	is	very	
accurate!	

§ Check	predic?on	mechanism	
–  Excep?ons	detected	at	end	of	instruc?on	execu?on	pipeline,	
special	hardware	for	various	excep?on	types	

§ Recovery	mechanism	
–  Only	write	architectural	state	at	commit	point,	so	can	throw	away	
par?ally	executed	instruc?ons	ager	excep?on	

–  Launch	excep?on	handler	ager	flushing	pipeline	

§ Bypassing	allows	use	of	uncommiPed	instruc?on	
results	by	following	instruc?ons	
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