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1 Introduction and goals

The goal of this laboratory assignment is to conduct memory hierarchy experiments by running
realistic workloads on RocketChip [1]. To enable RTL-based simulation using FPGAs, we have
already generated performance simulators by automatically transforming RocketChip [2, 3]. We will
run these performance simulators in Amazon EC2 F1 instances (https://aws.amazon.com/ec2/
instance-types/f1) to collect RocketChip’s memory system stats for a subset of the SEPC2006int
benchmark suite (https://www.spec.org/cpu2006/). You will also make architectural design
decisions based on the results.

The lab has two sections, a directed portion and an open-ended portion. Everyone will perform
the directed portion in the same way, and grades will be assigned based on correctness. The open-
ended portion will allow you to pursue more creative investigations, and your grade will be based
on the effort made to complete the task or the arguments you provide in support of your ideas.

For both the directed potion and the open-ended portion of this lab, you must work in a group
of two (not three). You are also encouraged to discuss solutions to the lab assignments with other
groups, but must run through the lab by yourselves and turn in a hard copy of your own lab report
in the beginning of the lecture on March 5th.

You are only required to do one of the open-ended assignments. These assignments are generally
starting points or suggestions. Alternatively, you can propose and complete your own open-ended
project as long as it is sufficiently rigorous. If you feel uncertain about the rigor of a proposal, feel
free to consult the instructor or the TAs.

1.1 Graded Items

You will turn in a hard copy of your results to the instructor or TA. Please label each section of
the results clearly. The directed items need to be turned in for evaluation. You only need to turn
in one of the problems found in the open-ended portion.

1. (Directed) Section 3.5: Analysis on Cache Statistics

2. (Directed) Section 3.6: Performance Modeling with Microarchitectural Events

3. (Open-ended) Section 4.1: Design a Memory Hierarchy with a 5mm2 Area Budget

4. (Open-ended) Section 4.2: Validation of Memory Hierarchies
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Figure 1: The Rocket Core Pipeline.

5. (Directed) Section 5: Feedback

Lab reports must be in readable English and not raw dumps of log-files. It is highly recommended
that your lab report be typed. Charts, tables, and figures - when appropriate - are great ways to
succinctly summarize your data.

2 Background

2.1 Rocket Chip

RocketChip [1] is an open-source SoC generator suitable for research and industrial purposes.
Rather than being a single instance of an SoC design, RocketChip is a hardware design generator,
capable of producing many design instances from a single piece of Chisel [4] source code. Multiple
industry products as well as silicon prototypes are manufactured using RocketChip. A RocketChip
instance generally consists of three major components: processors, a cache hierarchy, and an uncore.

Rocket Chip instantiates an in-order processor, Rocket, by default, but also supports various
core implementations. Rocket is a 5-stage in-order processor (Figure 1) that implements the RISC-
V ISA [5, 6]. Its cache hierarchy includes L1 instruction caches, L1 blocking data caches, and
fully associative L1 TLBs and a direct-mapped L2 TLB with configurable sizes, associativities, and
replacement policies. In this lab, we provide pre-built FPGA images for various configurations.
For now, RocketChip does not provide an L2 cache implementation yet, so we adopt an abstract
L2 cache model instead [3]. This cache model is runtime configurable, so we do not need different
FPGA images for different L2 cache parameters.

2.2 The SPEC CPU2006 Benchmark Suite

The SPEC CPU2006 benchmark suite (https://www.spec.org/cpu2006/) was widely used to eval-
uate real systems as well as design ideas in computer architecture research. This benchmark suite
includes real-world application which execute trillions of instructions with their reference inputs.
In this lab, we will only use a subset of benchmarks with their test inputs as follows:

• 400.perlbench: Cut-down version of Perl v5.8.7, the popular scripting language.

• 401.bzip2: Modified Julian Seward’s bzip2 version 1.0.3, where all compression and decom-
pression happens entirely in memory.
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• 403.gcc: C language compiler gcc version 3.2, which generates code for an AMD Opteron
processor.

• 429.mcf: Combinatorial optimization for single-depot vehicle scheduling in public mass trans-
portation.

SPEC CPU2006 will retire soon. Why not SPEC CPU2017? (Un)fortunately, SPEC CPU2017
is more realistic, requiring longer execution times. We just wanted to save time and money. How-
ever, we selected benchmarks that also exist in SPEC CPU2017.

2.3 FPGA-based Performance Simulation with Amazon EC2 F1 Instances

We evaluated various pipelines for very small benchmarks using software-based performance sim-
ulators for Lab1. However, software-based simulation does not provide sufficient performance to
evaluate complex hardware designs for realistic software applications.

Instead, any RTL designs can be directly mapped and emulated in the FPGA at speed. How-
ever, we need more accurate and runtime configurable timing models for memory systems and
devices that will be implemented as an abstract RTL model or a software model. For this reason,
RocketChip RTL implementations are automatically transformed and instrumented to generate
performance simulators running in the FPGA [2, 3], enabling efficient communications between
FPGA and software.

There are increasing interests in using FPGAs for application-specific accelerators. As a result,
cloud service providers decided to offer FPGA cloud instances such as Amazon EC2 F1 instances.
We use these services to quickly evaluate real-world hardware designs for real-world software ap-
plications.

We pre-built FPGA-based performance simulators for various cache parameters and provide
them as Amazon FPGA images (AFIs) that can be loaded into any F1 instances. We also provide
the Amazon machine image (AMI) that contains necessary software binaries and scripts to run
simulations.

3 Directed Portion (30%)

3.1 Launching an F1 Instance

We will launch an F1 instance to start this lab. First, log in to an instructional machine (
icluster{6-9}.eecs.berkeley.edu). Then, to enable commands to control your F1 instances,
run:

# You can add this line in ~/.bash_profile

inst$ source ~cs152/sp18/cs152.lab2.bashrc

Next, let’s launch an F1 instance:

inst$ launch-f1 | tee <file name>

wait until running

running now!

Instance ID: i-07ab2ee7a526ccacb
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IP Address : 34.227.49.244

Keep Instance ID & IP Address

Please shut the instance down in 8 hours.

wait for initialization

initializing

...

initializing

ok

It’s time to SSH into your instance

It will take for a while (˜3 min) for initialization, so please be patient. Also, note that you
will need the instance id and the IP address across this lab. Most importantly, each student is
allowed to launch single instance at a time as many times as possible, but the total instance-
hours should not exceed 40 hours. (Therefore, 80 hours are allowed for each group in total.) If you
violate any rule, you will get a severely penalty. (50 % with the first violation and 100 % with the
second violation. Therefore, you don’t have to do this lab if you violated the rules twice.)

3.2 Linux Boot and Hello World

Now, let’s SSH into the F1 instance:

inst$ ssh centos@<IP Address>

Once you SSH into your F1 instance, move into cs152-lab2:

$ cd cs152-lab2

This directory contains necessary files to conduct this lab. First of all, we should load an AFI
image:

# 16KiB L1$, L1 TLB reach = 128KiB, L2 TLB reach = 4MiB

$ ./load-fpga.sh agfi-0aa6f0423f0ff7843

This will load a RocketChip simulator for 16KiB L1 I/D caches, fully-associative L1 I/DTLBs
with 32 entries, a direct-mapped L2 TLB with 1024 entries.

We provide you a make file command to conveniently run RISC-V binary images:

# Default argument values

# L1_SIZE ?= 16KB (design parameter)

# L1_TLB_REACH ?= 128KB (design parameter)

# L2_TLB_REACH ?= 4MB (design parameter)

# L2_WAY_BITS ?= 2 (2^2 = 4 ways, runtime parameter)

# L2_SET_BITS ?= 12 (2^12 = 4096 sets, runtime parameter)

# L2_BLOCK_BITS ?= 6 (2^6 = 64 Bytes, runtime parameter)

$ make BIN=<RISCV binary image>

This command creates a directory named output/<cache parameters>, runs the image in the
simulation, pipes stdout and stderr to output/<cache parameters>/<RISCV binary image>.{out,
err}, and dumps the cache (and branch) statistics to output/<cache parameters>/<RISCV binary
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image>.stat. (Read Makefile for details.) This will be useful when you run simulations for various
cache configurations.

Now, let’s boot Linux and print Hello CS152! in the simulator. Run:

$ make BIN=images/bblvmlinux-hello

You can see linux boot messages and Hello CS152! in the screen. It also prints performance
counter values, which are also saved in outputs/16KiB-128KiB-4MiB-2-12-6/bblvmlinux-hello.stat:

## cycles = 19024725

## instret = 8995954

## loads = 674618

## stores = 430790

## L1 I$ misses = 95952

## L1 D$ misses = 68632

## L2$ misses = 20942

## ITLB misses = 1674

## DTLB misses = 2450

## L2 TLB misses = 2765

## branches = 390234

## branch mispredicts = 87680 // Mispredicts for branch directions (taken / not taken?)

## target mispredicts = 71764 // Mispridicts for control flow target addresses

Can you compute the CPI, the miss rates and the misses per kilo instructions (MPKIs) of miss
events for bblvmlinux-hello?

Warning: make claen will delete all generated output files. So, ask yourself carefully if you
really want to delete all the files before you run into a disaster.

3.3 Cache Parameter Sweep for SPEC CPU2006

You will collect cache and branch stats for SPEC CPU2006 by running images/bblvmlinux-{400.perlbench,
403.gcc, 429.mcf}. Note that these benchmarks run on top of Linux where TLBs play an im-
portant role for system performance.

To automate simulation runs for various cache configurations, we will run a script, sweep.py.
This script loads AFI images for each cache configuration and runs simulations for each benchmark
sequentially. Table 1 shows AFIs for different cache configurations. Also, for agfi-09d2f1c836f0ad278
(L1 $ size = 32 KiB, L1 TLB reach = 128 KiB, L2 TLB reach = 4 MiB) in Table 1, we apply L2
cache parameters in Table 2. Otherwise, we only have the 1MiB 8-way L2 cache with 128 byte
lines (the second parameter in Table 2). Please take a look and figure out how this script runs
simulations using the makefile command.

Once you understand what is going to happen, it is time to run the script to sweep cache
parameters:

# To prevent simulations gone while you are out

$ tmux

# Also, good to measure how long it took

$ time ./sweep.py
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AFI L1 $ assoc. L1 $ sets L1 $ block size L1 TLB reach L2 TLB reach

agfi-09161206020478060 4 32 64 bytes 128 KiB 4MiB
agfi-0aa6f0423f0ff7843 4 64 64 bytes 128 KiB 4MiB
agfi-09d2f1c836f0ad278 8 64 64 bytes 128 KiB 4MiB
agfi-0e31b1450453a3d68 4 64 64 bytes 128 KiB 2MiB
agfi-09dfe6ac51b81c7f6 4 64 64 bytes 128 KiB No L2 TLB
agfi-0c0aced8dc57ef135 4 64 64 bytes 64 KiB No L2 TLB
agfi-0815d9f8a9ed5ef16 4 64 64 bytes 32 KiB No L2 TLB

Table 1: AFIs for various cache configurations

Size Associativity Sets Block Size (Bytes)

1MiB 8 512 256
1MiB 8 1024 128
1MiB 8 2048 64
1MiB 8 4096 32
1MiB 2 4096 128
1MiB 4 2048 128

512KiB 8 512 128
2MiB 8 2048 128
4MiB 8 4096 128

Table 2: L2 cache configurations simulated with agfi-09d2f1c836f0ad278 in Table 1

It will run for a long time (˜7 hours). You can hang out while the machine is working, but
make sure you come back on time. (Otherwise, you will blow credits out and have Donggyu go
bankrupt!) If you want to return to the screen in the middle, SSH into F1 instance again and run:

$ tmux a

3.4 Terminating Your Instance

Once, you finish the experiments. Copy the output files to the instructional machine as follows:

inst$ scp -r centos@<IP Address>:~/cs152-lab2/outputs ./

You will have the whole output files in the current directory. Next, shut down your instance
with the following command in an instructional machine:

inst$ terminate-f1 <Instance Id>

Once again, you should terminate an instance on time to avoide a penalty.

3.5 Analysis on Cache Statistics

Now, it’s time to analyze the output files of long simulations. We provide you a script to convert
all output files into CSV files for each benchmark. Run:
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cd outputs

cp ~cs152/sp18/lab2/analyze.py ./

python analyze.py

Using the CSV files, answer the following questions. Assume the L1 cache access time is 1 cycle,
the L2 cache access time is 23 cycles, and the main memory access time is 100 cycles. You may
want to modify the script for each question.

1. How does the L1 cache size affect system performance? Report miss rates, MPKIs, AMATs
(in cycles), and CPIs for different L1 cache sizes by fixing other parameters.

2. How does the L2 cache size affect system performance? Report miss rates, MPKIs, AMATs
(in cycles), and CPIs for different L2 cache cache sizes by fixing other parameters.

3. How does the L2 cache associativity affect system performance? Report miss rates, MPKIs,
AMATs (in cycles), and CPIs for different L2 cache associativities by fixing other parameters.

4. How does the L2 cache block size affect system performance? Report miss rates, MPKIs,
AMATs (in cycles), and CPIs for different L2 cache block sizes by fixing other parameters.

5. L1 TLBs cannot be as large as you want because it is fully-associative. How important their
reaches are if there is no L2 TLB?

6. Do you think a direct-mapped L2 TLB is crucial for system performance? Present the evi-
dence.

3.6 Performance Modeling with Microarchitectural Events

We can approximate CPI with the following equation:

CPI = CPIbase +
∑

e∈{events}

MPIe × PENALTYe

where MPIe is misses per instruction for event e and PENALTYe is the miss penalty for event e.
(You can easily see why we computed MPKIs in Section 3.5). Table 3 shows the miss penalties for
microarchitectural events.

Note that RocketChip supports three-level page tables (Section 4.3 in [6]). Thus, when there
is an L2 TLB miss, the hardware page table walker (PTW) accesses a cache for page table entries
(PTEs) first (let’s assume its hit rate is 2/3) and the L2 cache and main memory if there is a miss
in the cache. The PTW repeats it three times to access a leaf table to obtain the physical page
number.

The Rocket core also predicts branch conditions as well as target addresses for control flow
instructions. When these predictions are wrong, PC is redirected from the memory stage, and thus
their penalties are 3 cycles in most cases.

Assuming CPIbase = 1.3 (why not 1?), predict CPIs for various cache parameters across bench-
marks using the data from Section 3.3 and compare them against the actual CPIs from the simu-
lations. How close are the predicted CPIs to the actual CPIs? What information do you want to
know for more accurate performance predictions?

7



Microarchitectural events Miss penalty (cycles)

L1 cache miss 23 (L2 cache access latency)
L2 cache miss 100 (DRAM access latency)
L1 TLB miss 2
L2 TLB miss 3× (2/3× 1 + 1/3× 123)

Branch condition mispredict 3
Target address mispredict 3

Table 3: Miss Penalties for microarchitectural events

4 Open-ended Portion (70%)

Pick one of the following questions. The open-ended portion is worth a large fraction of the grade of
the lab, and the grade depends on how comprehensive the process to your conclusion is. Therefore,
please spend the appropriate amount of time and energy on it. Also, have fun with it!

4.1 Design a Memory Hierarchy with a 5mm2 Area Budget

For this question, we want to figure out how we can make the best use out of our 5mm2 area budget
for caches. (Chips cannot be arbitrarily large!) Unlike the directed potion, cycle time matters now.

We will assume the critical path is on L1 caches or TLBs. (In reality, this is very likely).
Therefore, the access times for L1 caches and TLBs determine the cycle time of the CPU. L2 cache
can be accessed in multiple cycles. Of course, you can just decide L2 cache must be accessed in
one cycle by slowing down the cycle frequency.

We will use CACTI [7] to estimate the access times and the areas for given cache configurations.

4.1.1 Finding Access Times and Areas for Caches

You can use CACTI in your computer, but we recommend instructional machines. First, clone the
CACTI repository and compile CACTI:

inst$ git clone https://github.com/donggyukim/cacti.git

inst$ cd cacti

inst$ make

In cs152-sp18-configs, there are L1Icache.cfg, L1Dcache.cfg, L2cache.cfg, TLB.cfg,
which are configuration files for L1 instruction caches, L1 data caches, L2 caches, and L1 TLBs,
respectively. In this question, we do not have L2 TLBs anymore.

Edit these files for different cache configurations. Table 4 shows available configurations for
the L1 instruction and data caches and the fully-associative L1 TLBs. Table 5 shows available
parameters for L2 caches.

Once you edit the configuration file for each cache, run the following command to obtain the
access time and the area:

inst$ make run CFG=<configuration file>

The result will be saved in cs152-sp18-outputs/. Note that results are appended to the output
file when you repeat it for the same configuration file.
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AFI L1 $ size L1 $ assoc. L1 $ sets L1 $ block size L1 TLB reach

agfi-069fb09e3da3fa862 8 KiB 4 32 64 bytes 32 KiB
agfi-03568b559c45b97db 8 KiB 4 32 64 bytes 64 KiB
agfi-08c58a468273a0b0d 8 KiB 4 32 64 bytes 96 KiB
agfi-07e41bc03370a114e 8 KiB 4 32 64 bytes 128 KiB
agfi-0b8262a4e576cb828 16 KiB 4 64 64 bytes 32 KiB
agfi-0e5ecbb2f1d6e3f4b 16 KiB 4 64 64 bytes 64 KiB
agfi-0710d00dec992ca63 16 KiB 4 64 64 bytes 96 KiB
agfi-0712256c0497219a9 16 KiB 4 64 64 bytes 128 KiB
agfi-080e11351b52378e9 32 KiB 8 64 64 bytes 32 KiB
agfi-085646b4525462028 32 KiB 8 64 64 bytes 64 KiB
agfi-0aaa8cdf3586864fd 32 KiB 8 64 64 bytes 96 KiB
agfi-0f0209296119ea2c2 32 KiB 8 64 64 bytes 128 KiB

Table 4: Available L1 cache and TLB configurations

Parameters Values

Associatively 1, 2, 4, 8
Number of Sets Up to 4096 (power of 2)

Block Size Up to 256 bytes (power of 2)

Table 5: Available L2 cache parameters

Compute the cycle time assuming the critical path is on L1 caches or TLBs. L2 cache can be
accessed in multiple cycles, so you should compute the L2 cache latency in cycles by dividing its
access time by the cycle time. (Of course, it is one cycle if you decide the cycle time be the L2
cache access time.)

If you want to flush all output files, run:

inst$ make clean

4.1.2 Running Simulations

Once you decide cache configurations from CACTI, it’s time to validate your design ideas through
simulations. Launch an F1 instance as in Section 3.1 and SSH into the instance.

We provide you a script, run.py, to run a single simulation for each benchmark. Open the
script and edit it if necessary. In the script, you are supposed to select an AFI for L1 cache and
TLB configurations (Table 4) and change L2 cache parameters. You must change L2 cache
latency in cycles to the value that is computed from Section 4.1.1.

After editing the script, run a simulation for each benchmark with the following command:

$ ./run.py <benchmark image path>

4.1.3 Submission

The goal is to find the cache configurations that minimize CPI × cycle time. (Recall the Iron
Law.) You should submit a report that explains how you can get the optimal cache configurations.
Your argument should be supported by simulations through all 4 SPEC benchmarks used in this
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lab. In addition, please submit the configuration files from Section 4.1.1 to Donggyu (dgkim@eecs.
berkeley.edu).

4.2 Validation of Memory Hierarchies

For this question, we will validate memory hierarchies of simulated systems. We have some moti-
vations for this validation:

• How do we know cache configurations if you are not told in advance?

• Can we believe the simulated systems correctly implement memory hierarchies we desire?

• (Most importantly,) How can we trust Donggyu’s L2 cache model? We should suspect his
one-person show in this lab.

4.2.1 Getting Started and Easy Questions

To validate the memory hierarchy, we will use the caches benchmark in ccbench [8] developed by
Christopher Celio, who is also the author of BOOM used in Lab 3.

We provide you a pre-compiled binary for the caches benchmark in the instance. Launch an
instance as in Section 3.1 and SSH into the instance. Next, move to cs152-lab2/ccbench and find
run.py. Open it and figure out what this script does.

Whenever ready, run:

$ ./run.py <AFI image>

The AFI image can be any image in Table 1 and 4. This will execute the cache benchmark
multiple times with different arguments and generate an output file named caches.report.txt.

ccbench also provides a script to visualize the output file. First, clone the repository in an
instructional machine:

inst$ git clone https://github.com/donggyukim/ccbench.git

inst$ cd ccbench/caches/

Then copy the output file to the instructional machine and run a script:

inst$ scp centos@<ip address>:~/cs152-lab2/ccbench/cache.report.txt reports/

inst$ ./run-test.py -r reports/cache.report.txt

This will generate a graph in plots. Figure 2 is an example graph from the caches benchmark.
Can you answer the following questions with caches.report.txt?

• What is the L1 cache size?

• What is the L1 cache latency?

• What is the L2 cache size?

• What is the L2 cache latency?

• What is the DRAM latency?

To answer the following questions, you need to understand the source code (caches.c) and
rerun simulations with a modified script:
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Figure 2: Memory timing validation with ccbench

• What is the L1 cache block size?

• What is the L2 cache block size?

Read docs/CelioCaulin_CS267_finalReport.pdf for more information.
Finally, can you find any bug in Donggyu’s L2 cache timing model? (You will get an extra

point if it is a real bug.)

4.2.2 Hard Questions

Do your best to solve hard questions in this section. We do not expect you to solve all the questions
but you should at least show your initiative and effort to answer the following questions:

• What is the page size?

• What is the TLB reach?

• What is the miss penalty of TLBs?

• (Extra Points) What is the L1 instruction cache size?

You will need to modify caches.c to answer the above questions. Then, compile it in an
instructional machine:

inst$ source ~cs152/sp18/cs152.lab2.bashrc

inst$ cd ccbench/caches

inst$ make ARCH=riscv

Next, copy the binary file to the F1 instance. (We assume you have launched an instance.)
Make sure you backed up the previous binary.

inst$ scp caches centos@<ip address>:~/cs152-lab2/ccbench/

Now, you can run the benchmark with the script in the instance.
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4.2.3 Submission

Submit a report that explains how you can figure out cache configurations using ccbench. Specify
what AFI images and what cache parameters you used. We recommend you include graphs that
show the answers for each question. For hard question grading, please send caches.c to Donggyu
(dgkim@eecs.berkeley.edu).

5 Feedback

To best of our knowledge, this is the world’s first (hopefully not last) lab using AWS F1 instances to
explore various memory hierarchies with FPGA-based simulations running real-world applications.
Thus, we need your feedback to continue this lab in the future. Please fill out the survey form at
http://tinyurl.com/cs152-sp18-lab2-survey.

How many hours did the directed portion take you? How many hours did you spend on the
open-ended portion? Was this lab a lot of fun or just boring? Did you learn anything interesting?
Is there anything you would like to change? Feel free to write as little or as much as you want.
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