
The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and ofce hours to
understand the problems. However, each student must turn in his own solution to the problems.

CS152 Computer Architecture and
Engineering

SOLUTIONS
ISAs, Microprogramming and Pipelining

Assigned 1/24/2016 Problem Set #1 Due February 5

The problem sets also provide essential background material for the quizzes. The problem sets
will be graded primarily on an efort basis, but if you do not work through the problem sets you
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day
the problem sets are due to give you feedback. Homework assignments are due at the beginning
of class on the due date. Late homework will not be accepted, except for extreme circumstances
and with prior arrangement.

Problem 1: CISC, RISC, accumulator, and Stack: Comparing ISAs
In this problem, your task is to compare four diferent ISAs. x86 is an extended accumulator,
CISC architecture with variable-length instructions. RISC-V is a load-store, RISC architecture
with fxed-length instructions (for this problem only consider the 32-bit form of its ISA). We will
also look at a simple stack-based ISA and at an accumulator architecture.

Problem 1.A CISC

How many bytes is the program?
19

For the above x86 assembly code, how many bytes of instructions need to be fetched if b = 10?
4+10*(13)+10=144

Assuming 32-bit data values, how many bytes of data memory need to be fetched? Stored?
Fetched: the compare instruction accesses memory, and brings in a 4-byte word b+1
times:
4*11= 44
Stored: 0

Problem 1.B RISC

Many translations will be appropriate; here’s one. Other people have used sub instead of slt.
Remember (as far as we are concerned for this PS, or Lab 1, or any Quiz), RISC-V instructions
are only 32 bits long so you need to construct a 32 bit address from 12-bit and 20-bit
immediates. Also, since the problem specifed that the value of b was already contained in x1,
you could skip the lui/lw instructions entirely.

2

x86 instruction label RISC-V instruction sequence
xor %edx,%edx
 xor x4, x4, x4

xor %ecx,%ecx
 xor x3, x3, x3

cmp 0x8049580,%ecx

loop:

lui x6, 0x08049
lw x1, 0x580 (x6)
slt x5, x3, x1

jl L1
bne x5,x0, L1

jmp done
j done

add %eax,%edx
L1: add x4, x4, x2

inc %ecx
addi x3, x3, #1

jmp loop j loop

... done: ...

How many bytes is the RISC-V program using your direct translation?
10*4 = 40 (or 8*4=32 if you leave out the lui/lw)

How many bytes of RISC-V instructions need to be fetched for b = 10 using your direct
translation?
Since the value of b stays the same, you don’t have to repeat the lui and lw after you load it into
a register the frst time. So there are 4 instructions in the prelude and 5 that are part of the loop
(we don’t need to fetch the “j” until the 11th iteration). There are 3 instructions in the 11th
iteration. All instructions are 4 bytes. 4*(4+10*5+3) = 228. If you noted that b is in a register
and didn’t load from memory, then it’s only 220 bytes.

Assuming 32-bit data values, how many bytes of data memory need to be fetched? Stored?
Fetched: 4 (or zero if you keep B in a register)
Stored: 0

3

Problem 1.C Stack

pop a ;m[a] <- a
push 0 ;push a dummy value (mem[0]) onto stack so we
zero ; have something to zero
pop result ;m[result] <- 0 (result)
push 0 ;push a dummy value onto stack
zero
pop i ;m[i] <- 0 (i)

loop: push 0x8000 ;push b
 push i

sub ;b-i
bnez L1
goto done

L1: push a
push result
add
pop result ; result = result+a
push i
inc ; i=i+1
pop i
goto loop

done:

How many bytes is your program?
50

Using your stack translations from part (c), how many bytes of stack instructions need to be
fetched for b = 10?
(5*3+2*1) + 10*(9*3+3*1)+(4*3+1) = 330

Assuming 32-bit data values, how many bytes of data memory need to be fetched?
fetched = 4*number of dynamic pushes. There are 2 in the prelude, 2 at loop that get executed 11
times, and 3 at L1 that get executed 10 times. 2+2*11+3*10=54. 54*4 bytes = 216 bytes

Stored?
stored = 4 * number of dynamic pops. 4*(3+2*10) = 92 bytes
Note that the stack-depth in this program never exceeds two words, so we don’t have to worry
about extra accesses for spilling.

If you could push and pop to/from a four-entry register fle rather than memory (the Java virtual
machine does this), what would be the resulting number of bytes fetched and stored?
There are only four variables, so almost all memory accesses could be eliminated. If you stick to

4

a direct translation where you keep b in memory, then you would have to get it 11 times: 44
bytes fetched, 0 bytes stored. If you keep b in a register, too, then you only have to get it once: 4
bytes fetched, 0 bytes stored (but the code in 1.C’s answer doesn’t directly support this).

Problem 1.D Accumulator

zero accumulator Zero the accumulator
load B subtractor Load variable b into the subtractor

loop: dec subtractor Decrement the subtractor
add A accumulator Add the value of variable A into the accumulator
bnez loop subtractor Branch if the subtractor is non zero
goto done

done:

The above is just one way of doing it by using both the accumulator and subtractor. There is a
way to solve this problem with using just one of the two, by storing and loading values from
memory at every loop iteration, similar to the stack architecture. Both solutions are fne.

How many bytes is your program?
17

Can the same program be implemented with just one accumulator (i.e., no subtractor)?
There are two ways to answer this. If we don’t load and store values to and from memory at
every iteration the answer is no. By the nature of this ISA, the moment we load one variable, say
B, we cannot store another variable which is necessary to do the increments.
However, similar to the stack architecture, we can make this work with one accumulator. It just
takes more loads and stores.

If not, how would you extend this ISA to implement this program with just one accumulator?
If the answer to the above was no, we can simply add a multiply instruction, or add memory-
memory instructions (instructions that can operate on two memory addresses). However, the
latter would change the nature of the ISA.

5

Problem 1.E Conclusions

CISC < RISC < STACK for both static and dynamic code size.
(RISC ≈ CISC) < STACK for data memory trafc

Problem 1.F Optimization

Most optimizations revolve around the elimination of unnecessary control fow. Also, the load
can be hoisted out of the loop.

lui x6, 0x08049 ;optional if x1 already contains b
lw x1, 0x580(x6) ;optional if x1 already contains b
xor x4, x4, x4
blt x1,x0, done

loop: addi x1, x1, -1
add x4, x4, x2
bgtz x1, loop

done:

The optimization here is to decrement a counter until it reaches zero, instead of incrementing
an initially zero count until it reaches b. We can also omit the unconditional jumps if we just put
a conditional branch at the very end. This re-write brings dynamic code size down to 136 bytes;
static code size to 28; and memory
trafc down to 4 bytes.

6

Problem 2: Microprogramming and Bus-Based Architectures

Problem 2.A Implementing Memory-to-Memory Add

Worksheet M1-1 shows one way to implement ADDm in microcode.

Note that to maintain “clean” behavior of your microcode, no registers in the register fle should
change their value during execution (unless they are written to). This does not refer to
the registers in the datapath (IR, A, B, MA). Thus, using asterisks for the load signals (ldIR,
ldA, ldB, and ldMA) is acceptable as long as the correctness of your microcode is not afected
(and in fact, should be done for full optimality). Also note the ubr to FETCH0 must be contained
on its own line, since you can’t “spin” on the same micro-code line if memory is still busy OR
jump to FETCH0 if memory is not busy. S is either “spin on same micro-code line (upc)” or go
to upc+1.

When performing a memory access, you could be “spinning” for many cycles, waiting for
memory to become “not busy”. In that time, you must keep all inputs to the memory system
constant: thus, ldMA must be 0, because you don’t want the memory address to change while
accessing memory! Likewise, in “Mem <- A+B”, ldA and ldB must also be set to 0, so that the
data being sent to memory stays constant. To phrase this is another way, we have no idea when
the memory system latches in our inputs.

Finally, note the cleverness of ldA being “0” on FETCH2. On entering an instruction, A always
equals PC+4. This saves a cycle if we dispatch to a jump instruction, which frst loads PC+4
into the ALU (or the RDNPC instruction, which loads PC+4 into rd).

The microcode for ADDm is straightforward.

7

Problem 2.B Implementing STRCPY Instruction

Worksheet M1-2 shows one way to implement STRCPY in microcode.

A few notes:
-LdIR is zero for all uops because we keep needing to read the actual values of Rs, Rd which are
stored in the IR register
-ldMA is kept at 0 when performing a memory operation because memory operations are multi-
cycle and thus you need to hold the memory address constant (this logic also applies to ldA,ldB
when used as sources for memory).

8

Problem 2.C Instruction Execution Times

How many cycles does it take to execute the following instructions in the microcoded RICV-V
machine? Use the states and control points from RISC-V-Controller-2 in Lecture 2 (or Lab 1, in
${LAB1ROOT}/src/rv32_ucode/micrcode.scala) and assume Memory will not assert its busy
signal.

Instruction Cycles
ADD x3,x2,x1 3 + 3 = 6
ADDI x2,x1,#4 3 + 3 = 6
SW x1,0(x2) 3 + 5 = 8
BNE x1,x2,label #(x1 == x2) 3 + 4 = 7
BNE x1,x2,label #(x1 != x2) 3 + 3 + 4 = 10
BEQ x1,x2,label #(x1 == x2) 3 + 3 + 4 = 10
BEQ x1,x2,label #(x1 != x2) 3 + 4 = 7
J label 3 + 5 = 8
JAL label 3 + 5 = 8
JALR x1 3 + 5 = 8

9

As discussed in Lecture 2, instruction execution includes the number of cycles needed to fetch
the instruction. The lecture notes used 4 cycles for the fetch phase, while Worksheet 1 shows
that this phase can actually be implemented in 3 cycles —either answer was fne. The above
table uses 3 cycles for the fetch phase.

The above answers are derived from the micro-coded processor provided in Lab 1. It is okay if
your answers difer from having been derived from the lecture notes.

Overall, BNE (for a taken branch), and BEQ (for a taken branch) take the most cycles to execute
(10), while arithmetic functions such as ADD and ADDI take the fewest cycles (6).

10

Problem 3: 6-Stage Pipeline

Problem 3.A Hazards: Second Write Port

The second write port improves performance by resolving some RAW hazards earlier than they
would be if ALU operations had to wait until writeback to provide their results to subsequent
dependent instructions. It would help with the following instruction sequence:

add x1, x2, x3
add x4, x5, x6
add x7, x1, x9

The important insight is that the second write port cannot resolve data hazards for immediately
back-to-back instructions. (Recall that the RF is read in the ID stage, and when after the frst
instruction has written back, it is in M1, so the third instruction is in ID.)

Problem 3.B Hazards: Bypasses Removed

The bypass path from the end of M1 to the end of ID can be removed. (Credit was also given for
the bypass path from the beginning of M2 to the beginning of EX, since these are equivalent.)

Additionally, ALU results no longer have to be bypassed from the end of M2 or the end of WB,
but these bypass paths are still used to forward load results to earlier stages.

Problem 3.C Precise Exceptions

Illegal address exceptions are not detected until the start of the M2 stage. Since writebacks can
occur at the end of the EX stage, it is possible for an ALU op following a memory access to an
illegal address to have written its value back before the exception is detected, resulting in an
imprecise exception. For example:

lw x1, -1(x0) // address -1 is misaligned
add x2, x3, x4 // x2 will be overwritten, even though preceding instruction has faulted

11

Problem 3.D Precise Exceptions: Implemented using a Interlock

Stall any ALU op in the ID stage if the instruction in the EX stage is a load or a store. The
instruction sequence above engages this interlock.

Loads and stores account for about one-third of dynamic instructions. Assuming that the
instruction following a load or store is an ALU op two-thirds of the time, and ignoring
the existing load-use delay, this solution will increase the CPI by (1/3)*(2/3)==2/9. However,
only a qualitative explanation was necessary for credit.

Problem 3.E Precise Exceptions: Implemented using an Extra Read Port

In addition to reading an instruction’s source operands in the ID stage, also read the destination
register, rd. If an early writeback occurs before a preceding exception was detected, then the old
value of rd is preserved in the EX/M1 pipeline register and can be restored to the register fle,
maintaining precise state.

12

Problem 4: CISC vs RISC
For each of the following questions, circle either CISC or RISC, depending on which ISA you
feel would be best suited for the situation described. Also, briefy explain your reasoning.

Problem 4.A Lack of Good Compilers I

CISC

CISC ISAs provided more complex, higher-level instructions such as string manipulation
instructions and special addressing modes convenient for indexing tables (say for your
company’s payroll application). Two example CISC instructions: “DBcc: Test Condition,
Decrement, and Branch” and “CMP2: Compare Register against Upper and Lower Bounds”.
This made life easy if you stared at assembly all day, and couldn’t hide behind
convenient software abstractions/subroutines!

Problem 4.B Lack of Good Compilers II

Compilers had difculty targeting CISC ISAs in part because the complicated instructions have
many difcult and hard to analyze side-efects. A load-store/register-register RISC ISA
which limits side-efects to a single register or memory location per instruction is relatively easy
for a compiler to understand, analyze, and schedule for.

RISC

Problem 4.C Fast Logic, Slow Memory

CISC

When instruction fetch takes 10x longer than a CPU logic operation, you are going to want to
push as much compute as you can into each instruction! For example, a CISC instruction which
performs expensive, multi-cycle foating point routines in hardware is FAR faster than a software
foating point subroutine that requires perhaps dozens of expensive instruction fetches.

13

Problem 4.D Higher Performance(?)

Because RISC instructions tend to have simple, easy to analyze side-efects, they lend
themselves more readily to pipelined micro-architectures which dynamically check for
dependencies between instructions and interlock or bypass when dependencies arise. And
because little work needs to be performed in each stage, the pipeline can be clocked at very high
frequencies.

This advantage is evident in modern micro-architectures of old CISC ISAs: typically the front-
end of the processor has a decoder which translates CISC instructions (e.g., x86 instructions)
into RISC “micro-ops”, which a high-performance pipeline can then dynamically schedule for
maximum performance.

For these CISC architectures such as x86 and IBM S/360, they’re still around for legacy reasons.
But if you had a chance at a clean slate, you’d probably prefer a clean RISC implementation
with a direct translation to the micro-architecture instead of using area and power on a CISC
decoder front-end (not to mention the additional complexity forced on your memory system to
handle the odd CISC addressing modes).

RISC

14

Problem 5: Iron Law of Processor Performance

Instructions /
Program

Cycles /
Instruction

Seconds / Cycle Overall
Performance

a)
Adding a branch
delay slot

Increase: Nops
must be inserted
when the branch
delay slot cannot
be usefully flled.

Decrease: Some
control hazards are
eliminated; also
additional NOPs
execute quickly
because they have
no data hazards.

No efect: doesn’t
change pipeline

Decrease:
branch_kill signal
is no longer needed

Ambiguous:
Depends on the
program and how
often the delay slot
can be flled with
useful work

b)

Adding a
complex
instruction

Decrease: if the
added instruction
can replace a
sequence of
instructions.

No efect: if it is
unusable.

Increase: if
implementing the
instruction means
adding or re-using
stages.

No efect: if the
number of cycles is
kept constant but it
just lengthens the
logic in one stage.

Increase: since
more logic and
thus longer critical
path.

No efect: if it is
implemented by
more or re-used
stages but each
stage gets no
longer.

Ambiguous: if the
program can take
advantage of the
new instruction, it
can mitigate the
costs of
implementing it.
This is a hard
decision for an ISA
designer to
make!

c)

Reduce number
of registers in
the ISA

Increase: Values
will more
frequently be
spilled to the
stack, increasing
number of loads
and stores

Increase: more
loads followed by
dependent
instructions, will
cause stalls, and
likely be difcult
to schedule around

Decrease: fewer
registers means
shorter register fle
access time

Ambiguous: if the
program uses few
registers and thus
spills rarely to
memory, the faster
reg. access times
may win out. Also,
your instructions
may be able to be
shorter, improving
amongst other
things code
density and I$ hit-
rates.

15

d)

Improving
memory access
speed

No efect: since
instructions make
no assumption
about memory
speed.

Decrease: if access
to Memory is
pipelined (>1
cycle) since it
will now take less
cycles.

No efect: if
memory access is
done in a single
cycle.

Decrease: if
memory access is
on the critical path
or memory was 1
cycle.

No efect: if
memory is
pipelined and just
takes less cycles.

Improve: improving
memory access
time, at least by
these Iron Law
metrics, will
increase
performance
of the whole system
(unless you chose
“no efect” for
everything).
Of course, there
could be other
secondary costs of
improving mem.
access speeds, like
having to use
smaller caches, but
I’m getting carried
away here.

e)

Adding 16-bit
versions of the
most common
instructions in
RISC-V
(normally 32-
bits in length) to
the ISA (i.e.,
make MIPS a
variable length
ISA)

No efect:
because
you are replacing
32b instructions
with equivalent
16b versions, it
saves on code
space, but it
leaves the Inst/
Program count
unchanged

No efect: you are
simple executing
equivalent 16b
versions of regular
32b instructions.
Both appear
identical
to the pipeline.

decrease: since
code size has
shrunk, I$ hits will
increase and
thus less cycles
will be spent
fetching
instructions

Increase: decode
may increase this
since the
instruction
format is more
complex (and you
have to deal with
fguring out where
the instruction
boundaries are)

No efect: if this
fts within the
cycle time, since
this makes no
change to the
pipeline and only
increases the
decode stage (or
perhaps adds
another stage to the
front-end).

Ambiguous: the
main advantage is
smaller code size,
whichcan improve
I$ hit rates and save
on fetch energy (get
more instructions
per fetch). This can
improve
performance
(or at least energy),
however the more
complex decode
could also
counteract these
gains.

16

f)

For a given
CISC ISA,
changing the
implementation
of the micro-
architecture
from a
microcoded
engine to a RISC
pipeline (with a
CISC-to-RISC
decoder on the
front-end)

No efect:
because
the ISA is not
changing, the
binary does not
change, and thus
there is no change
to Inst/Program.

Decrease:
Microcoded
machines take
several clock
cycles to execute
an instruction,
while the RISC
pipeline should
have a CPI near 1
(thanks to
pipelining).

No efect: the
amount of work
done in one
pipeline stage and
one microcode
cycle are about the
same.
Increase: the RISC
pipeline introduces
longer control
paths and adds
bypasses, which
are likely to be on
the critical path.

Increase: it should
be far easier to
pipeline RISC uops
once the CISC
instructions
Have been
decoded/translated,
leading to a higher
performance
machine (see
modern x86
machines).

17

