
The  problem  sets  are  intended  to  help  you  learn  the  material,  and  we  encourage  you  to
collaborate with other students and to ask questions in discussion sections and ofce hours to
understand the problems. However, each student must turn in his own solution to the problems.

CS152 Computer Architecture and
Engineering

SOLUTIONS
ISAs, Microprogramming and Pipelining

Assigned 1/24/2016 Problem Set #1 Due February 5

The problem sets also provide essential background material for the quizzes. The problem sets
will be graded primarily on an efort basis, but if you do not work through the problem sets you
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day
the problem sets are due to give you feedback.  Homework assignments are due at the beginning
of class on the due date.  Late homework will not be accepted, except for extreme circumstances
and with prior arrangement.



Problem 1: CISC, RISC, accumulator, and Stack: Comparing ISAs
In this problem, your task is to compare four diferent ISAs.  x86 is an extended accumulator,
CISC architecture with variable-length instructions.  RISC-V is a load-store, RISC architecture 
with fxed-length instructions (for this problem only consider the 32-bit form of its ISA). We will
also look at a simple stack-based ISA and at an accumulator architecture.

Problem 1.A CISC

How many bytes is the program?  
19

For the above x86 assembly code, how many bytes of instructions need to be fetched if b = 10?  
4+10*(13)+10=144

Assuming 32-bit data values, how many bytes of data memory need to be fetched? Stored?
Fetched:  the compare  instruction  accesses  memory,  and  brings  in  a  4-byte  word  b+1
times: 
4*11= 44
Stored: 0

Problem 1.B RISC

Many translations will be  appropriate; here’s one.   Other people  have  used sub instead of slt.
Remember (as far as we are concerned for this PS, or Lab 1, or any Quiz), RISC-V instructions 
are  only  32  bits  long  so  you  need  to  construct  a  32  bit  address  from  12-bit  and  20-bit 
immediates.   Also, since the problem specifed that the value of b was already contained in x1, 
you could skip the lui/lw instructions entirely.
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x86 instruction label RISC-V instruction sequence
xor    %edx,%edx
         xor x4, x4, x4

xor    %ecx,%ecx
         xor x3, x3, x3

cmp    0x8049580,%ecx

loop:

lui x6, 0x08049
lw x1, 0x580 (x6)
slt x5, x3, x1

jl     L1 
bne x5,x0, L1

jmp    done
j done

add    %eax,%edx
L1: add x4, x4, x2

inc    %ecx
addi x3, x3, #1

jmp    loop j loop

... done: ...

How many bytes is the RISC-V program using your direct translation?  
10*4 = 40 (or 8*4=32 if you leave out the lui/lw)

How many bytes of RISC-V  instructions  need  to  be  fetched  for  b  =  10  using  your  direct 
translation?
Since the value of b stays the same, you don’t have to repeat the lui and lw after you load it into
a register the frst time. So there are 4 instructions in the prelude and 5 that are part of the loop
(we don’t  need to fetch the “j”  until  the 11th iteration).  There are 3 instructions  in the 11th
iteration. All instructions  are  4  bytes. 4*(4+10*5+3) = 228.  If you noted that b is in a register
and didn’t load from memory, then it’s only 220 bytes.

Assuming 32-bit data values, how many bytes of data memory need to be fetched? Stored?
Fetched: 4  (or zero if you keep B in a register)
Stored: 0
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Problem 1.C Stack

pop a   ;m[a] <- a
push 0  ;push a dummy value (mem[0]) onto stack so we 
zero    ;    have something to zero
pop result  ;m[result] <- 0   (result)
push 0   ;push a dummy value onto stack
zero
pop i   ;m[i] <- 0   (i)

loop: push 0x8000 ;push b
  push i

sub         ;b-i
bnez L1
goto done

L1:   push a
push result
add
pop result  ; result = result+a
push i
inc    ; i=i+1
pop i
goto loop

done:

How many bytes is your program?  
50

Using your stack  translations  from  part (c),  how many bytes  of  stack  instructions need to be 
fetched for b = 10? 
(5*3+2*1) + 10*(9*3+3*1)+(4*3+1) = 330

Assuming 32-bit data values, how many bytes of data memory need to be fetched? 
fetched = 4*number of dynamic pushes. There are 2 in the prelude, 2 at loop that get executed 11
times, and 3 at L1 that get executed 10 times. 2+2*11+3*10=54. 54*4 bytes = 216 bytes

Stored?
stored = 4 * number of dynamic pops. 4*(3+2*10) = 92 bytes
Note that the stack-depth in this program never exceeds two words, so we  don’t have  to worry 
about extra accesses for spilling.

If you could push and pop to/from a four-entry register fle rather than memory (the Java virtual 
machine does this), what would be the resulting number of bytes fetched and stored?
There are only four variables, so almost all memory accesses could be eliminated.  If you stick to
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a direct translation where you keep b in memory, then you would have to get it 11 times: 44
bytes fetched, 0 bytes stored.  If you keep b in a register, too, then you only have to get it once: 4
bytes fetched, 0 bytes stored (but the code in 1.C’s answer doesn’t directly support this).

Problem 1.D Accumulator

zero accumulator Zero the accumulator
load B subtractor Load variable b into the subtractor

loop: dec subtractor Decrement the subtractor
add A accumulator Add the value of variable A into the accumulator
bnez loop subtractor Branch if the subtractor is non zero
goto done

done:

The above is just one way of doing it by using both the accumulator and subtractor. There is a
way to solve this problem with using just one of the two, by storing and loading values from
memory at every loop iteration, similar to the stack architecture. Both solutions are fne.

How many bytes is your program?
17

Can the same program be implemented with just one accumulator (i.e., no subtractor)?
There are two ways to answer this. If we don’t load and store values to and from memory at
every iteration the answer is no. By the nature of this ISA, the moment we load one variable, say
B, we cannot store another variable which is necessary to do the increments.
However, similar to the stack architecture, we can make this work with one accumulator. It just
takes more loads and stores.

If not, how would you extend this ISA to implement this program with just one accumulator?
If the answer to the above was no, we can simply add a multiply instruction, or add memory-
memory instructions  (instructions  that  can operate  on two memory addresses).  However,  the
latter would change the nature of the ISA.
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Problem 1.E Conclusions

CISC < RISC < STACK for both static and dynamic code size. 
(RISC ≈ CISC) < STACK for data memory trafc

Problem 1.F Optimization

Most optimizations revolve around the elimination of unnecessary control  fow.   Also, the load 
can be hoisted out of the loop.

lui x6, 0x08049  ;optional if x1 already contains b
lw x1, 0x580(x6) ;optional if x1 already contains b
xor x4, x4, x4
blt x1,x0, done

loop: addi x1, x1, -1
add x4, x4, x2
bgtz x1, loop

done:

The optimization here is to decrement a counter until it reaches zero, instead of incrementing
an initially zero count until it reaches b. We can also omit the unconditional jumps if we just put
a conditional branch at the very end. This re-write brings dynamic code size down to 136 bytes;
static code size to 28; and memory 
trafc down to 4 bytes.
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Problem 2:  Microprogramming and Bus-Based Architectures 

Problem 2.A Implementing Memory-to-Memory Add

Worksheet M1-1 shows one way to implement ADDm in microcode. 

Note that to maintain “clean” behavior of your microcode, no registers in the register fle should
change their value  during  execution  (unless they  are  written  to).    This  does  not  refer  to
the registers in the  datapath (IR, A, B, MA).   Thus, using asterisks for the load signals (ldIR,
ldA, ldB, and ldMA) is acceptable as long as the correctness of your microcode is not afected
(and in fact, should be done for full optimality).  Also note the ubr to FETCH0 must be contained
on its own line, since you can’t “spin” on the same micro-code line if memory is still busy OR
jump to FETCH0 if memory is not busy.  S is either “spin on same micro-code line (upc)” or go
to upc+1. 

When  performing  a  memory  access,  you could  be  “spinning”  for  many  cycles,  waiting  for
memory to become “not busy”.  In that time, you must keep all inputs to the memory system
constant: thus, ldMA must be 0, because  you don’t want the memory address to  change  while
accessing memory!  Likewise, in “Mem <- A+B”, ldA and ldB must also be set to 0, so that the
data being sent to memory stays constant. To phrase this is another way, we have no idea when
the memory system latches in our inputs.

Finally, note the cleverness of ldA being “0” on FETCH2. On entering an instruction, A always
equals PC+4.   This saves a cycle if we dispatch to a jump instruction, which frst loads PC+4
into the ALU (or the RDNPC instruction, which loads PC+4 into rd).

The microcode for ADDm is straightforward.

7



Problem 2.B Implementing STRCPY Instruction

Worksheet M1-2 shows one way to implement STRCPY in microcode.

A few notes:
-LdIR is zero for all uops because we keep needing to read the actual values of Rs, Rd which are 
stored in the IR register
-ldMA is kept at 0 when performing a memory operation because memory operations are multi-
cycle and thus you need to hold the memory address constant (this logic also applies to ldA,ldB 
when used as sources for memory).
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Problem 2.C Instruction Execution Times

How many cycles does it take to execute the following instructions in the microcoded RICV-V 
machine?  Use the states and control points from RISC-V-Controller-2 in Lecture 2 (or Lab 1, in 
${LAB1ROOT}/src/rv32_ucode/micrcode.scala) and assume Memory will not assert its busy 
signal.

Instruction Cycles
ADD  x3,x2,x1 3 + 3 = 6
ADDI x2,x1,#4 3 + 3 = 6
SW   x1,0(x2) 3 + 5 = 8
BNE  x1,x2,label  #(x1 == x2) 3 + 4 = 7
BNE  x1,x2,label  #(x1 != x2) 3 + 3 + 4 = 10
BEQ  x1,x2,label  #(x1 == x2) 3 + 3 + 4 = 10
BEQ  x1,x2,label  #(x1 != x2) 3 + 4 = 7
J    label 3 + 5 = 8
JAL  label 3 + 5 = 8
JALR x1 3 + 5 = 8
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As discussed in Lecture 2, instruction execution includes the number of cycles needed to fetch
the instruction.  The lecture notes used 4 cycles for the fetch phase, while Worksheet 1 shows
that this phase can actually be implemented in 3 cycles —either answer was fne.  The above
table uses 3 cycles for the fetch phase.  

The above answers are derived from the micro-coded processor provided in Lab 1.  It is okay if
your answers difer from having been derived from the lecture notes.

Overall, BNE (for a taken branch), and BEQ (for a taken branch) take the most cycles to execute
(10), while arithmetic functions such as ADD and ADDI take the fewest cycles (6).
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Problem 3: 6-Stage Pipeline

Problem 3.A Hazards: Second Write Port

The second write port improves performance by resolving some RAW hazards earlier than they 
would be if ALU operations had to wait  until writeback to provide  their results to subsequent 
dependent instructions.  It would help with the following instruction sequence:

add x1, x2, x3
add x4, x5, x6
add x7, x1, x9

The important insight is that the second write port cannot resolve data hazards for immediately 
back-to-back instructions.   (Recall that the RF is read in the ID stage, and when after the frst 
instruction has written back, it is in M1, so the third instruction is in ID.)

Problem 3.B Hazards: Bypasses Removed

The bypass path from the end of M1 to the end of ID can be removed.  (Credit was also given for
the bypass path from the beginning of M2 to the beginning of EX, since these are equivalent.)

Additionally, ALU results no longer have to be bypassed from the end of M2 or the end of WB, 
but these bypass paths are still used to forward load results to earlier stages.

Problem 3.C Precise Exceptions

Illegal address exceptions are not detected until the start of the M2 stage.  Since writebacks can 
occur at the end of the EX stage, it is possible for an ALU op following a memory access to an 
illegal address  to  have  written its value  back before  the exception  is detected, resulting  in  an
imprecise exception.  For example:

lw x1, -1(x0)  // address -1 is misaligned
add x2, x3, x4  // x2 will be overwritten, even though preceding instruction has faulted
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Problem 3.D Precise Exceptions: Implemented using a Interlock

Stall any ALU op in the  ID stage if  the  instruction in the EX stage  is a load or a store.     The 
instruction sequence above engages this interlock. 

Loads  and  stores  account  for  about  one-third  of  dynamic  instructions.    Assuming  that  the
instruction  following  a  load  or store  is  an  ALU op  two-thirds  of  the  time,  and  ignoring
the existing load-use delay, this solution will increase the CPI by (1/3)*(2/3)==2/9.  However,
only a qualitative explanation was necessary for credit.

Problem 3.E Precise Exceptions: Implemented using an Extra Read Port

In addition to reading an instruction’s source operands in the ID stage, also read the destination 
register, rd.  If an early writeback occurs before a preceding exception was detected, then the old 
value of rd is preserved in the  EX/M1 pipeline register and can be restored to the  register fle, 
maintaining precise state.
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Problem 4: CISC vs RISC
For each of the following questions, circle either  CISC or RISC, depending on which ISA you
feel would be best suited for the situation described.  Also, briefy explain your reasoning. 

Problem 4.A Lack of Good Compilers I

CISC   

CISC  ISAs  provided  more  complex,  higher-level  instructions  such  as  string  manipulation 
instructions  and  special  addressing  modes  convenient  for  indexing  tables  (say  for  your 
company’s  payroll  application).  Two  example  CISC  instructions:  “DBcc:  Test  Condition, 
Decrement, and Branch” and  “CMP2: Compare  Register against  Upper and Lower Bounds”.  
This  made  life  easy  if  you  stared  at  assembly  all  day,  and  couldn’t  hide  behind  
convenient software abstractions/subroutines!

Problem 4.B Lack of Good Compilers II

Compilers had difculty targeting CISC ISAs in part because the complicated instructions have 
many difcult  and  hard  to  analyze  side-efects. A load-store/register-register RISC  ISA  
which limits side-efects to a single register or memory location per instruction is relatively easy 
for a compiler to understand, analyze, and schedule for. 

RISC

Problem 4.C Fast Logic, Slow Memory

CISC   

When instruction fetch takes 10x longer than a CPU logic  operation, you are going to want to 
push as much compute as you can into each instruction!  For example, a CISC instruction which 
performs expensive, multi-cycle foating point routines in hardware is FAR faster than a software
foating point subroutine that requires perhaps dozens of expensive instruction fetches.
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Problem 4.D Higher Performance(?)

Because RISC instructions tend to have simple, easy to analyze side-efects, they lend 
themselves more readily  to  pipelined  micro-architectures  which  dynamically  check  for  
dependencies between instructions and interlock or bypass when dependencies arise.  And 
because little work needs to be performed in each stage, the pipeline can be clocked at very high 
frequencies.

This advantage is evident in modern micro-architectures of old CISC ISAs: typically the front-
end of the processor has a decoder which translates CISC  instructions (e.g., x86 instructions) 
into RISC “micro-ops”, which a high-performance pipeline can then dynamically schedule  for 
maximum performance. 

For these CISC architectures such as x86 and IBM S/360, they’re still around for legacy reasons. 
But if  you had a  chance at  a clean slate, you’d probably prefer a clean RISC implementation 
with a direct translation to the micro-architecture instead of  using area and power on  a CISC 
decoder front-end (not to mention the additional  complexity forced on  your memory  system to 
handle the odd CISC addressing modes).

RISC
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Problem 5: Iron Law of Processor Performance

Instructions /
Program

Cycles /
Instruction

Seconds / Cycle Overall
Performance

a)
Adding a branch
delay slot

Increase: Nops 
must be inserted 
when the branch 
delay slot cannot 
be usefully flled.

Decrease: Some 
control hazards are
eliminated; also 
additional NOPs 
execute quickly 
because they have 
no data hazards.

No efect: doesn’t 
change pipeline

Decrease: 
branch_kill signal 
is no longer needed

Ambiguous: 
Depends on the 
program and how 
often the delay slot 
can be flled with 
useful work

b)

Adding a 
complex 
instruction

Decrease: if the 
added instruction 
can replace a 
sequence of 
instructions.

No efect: if it is 
unusable.

Increase: if 
implementing the 
instruction means 
adding or re-using 
stages.

No efect: if the 
number of cycles is
kept constant but it
just lengthens the 
logic in one stage.

Increase: since 
more logic and 
thus longer critical 
path.

No efect: if it is 
implemented by 
more or re-used 
stages but each 
stage gets no 
longer.

Ambiguous: if the 
program can take 
advantage of the 
new instruction, it 
can mitigate the 
costs of 
implementing it. 
This is a hard 
decision for an ISA 
designer to 
make!

c)

Reduce number 
of registers in 
the ISA

Increase: Values 
will more 
frequently be 
spilled to the 
stack, increasing 
number of loads 
and stores

Increase: more 
loads followed by 
dependent 
instructions, will 
cause stalls, and 
likely be difcult 
to schedule around

Decrease: fewer 
registers means 
shorter register fle 
access time

Ambiguous: if the 
program uses few 
registers and thus 
spills rarely to 
memory, the faster 
reg. access times 
may win out. Also, 
your instructions 
may be able to be 
shorter, improving 
amongst other 
things code 
density and I$ hit-
rates.
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d)

Improving 
memory access 
speed

No efect: since 
instructions make 
no assumption 
about memory 
speed.

Decrease: if access
to Memory is 
pipelined (>1 
cycle) since it 
will now take less 
cycles.

No efect: if  
memory access is 
done in a single 
cycle.

Decrease: if 
memory access is 
on the critical path 
or memory was 1 
cycle.

No efect: if 
memory is 
pipelined and just 
takes less cycles.

Improve: improving
memory access 
time, at least by 
these Iron Law 
metrics, will 
increase 
performance 
of the whole system
(unless you chose 
“no  efect” for 
everything).
Of course, there 
could be other 
secondary costs of 
improving mem.
access speeds, like 
having to use 
smaller caches, but 
I’m getting carried 
away here.

e)

Adding 16-bit 
versions of the 
most common 
instructions in 
RISC-V 
(normally 32-
bits in length) to 
the ISA (i.e., 
make MIPS a 
variable length 
ISA)

No efect: 
because 
you are replacing 
32b instructions 
with equivalent 
16b versions, it 
saves on code 
space, but it 
leaves the Inst/
Program count 
unchanged

No efect: you are 
simple executing 
equivalent 16b 
versions of regular 
32b instructions. 
Both appear 
identical 
to the pipeline.

decrease: since 
code size has 
shrunk, I$ hits will 
increase and 
thus less cycles 
will be spent 
fetching 
instructions

Increase: decode 
may increase this 
since the 
instruction 
format is more 
complex (and you 
have to deal with 
fguring out where 
the instruction 
boundaries are)

No efect: if this 
fts within the 
cycle time, since 
this makes no 
change to the 
pipeline and only 
increases the 
decode stage (or  
perhaps adds 
another stage to the
front-end).

Ambiguous: the 
main advantage is 
smaller code size, 
whichcan improve 
I$ hit rates and save
on fetch energy (get
more instructions 
per fetch). This can 
improve 
performance 
(or at least energy), 
however the more 
complex decode 
could also 
counteract these 
gains.
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f)

For a given 
CISC ISA, 
changing the 
implementation 
of the micro-
architecture 
from a 
microcoded 
engine to a RISC
pipeline (with a 
CISC-to-RISC 
decoder on the 
front-end)

No efect: 
because 
the ISA is not 
changing, the 
binary does not 
change, and thus 
there is no change
to Inst/Program.

Decrease: 
Microcoded 
machines take 
several clock 
cycles to execute 
an instruction, 
while the RISC 
pipeline should 
have a CPI near 1 
(thanks to 
pipelining).

No efect: the 
amount of work 
done in one 
pipeline stage and 
one microcode 
cycle are about the 
same.
Increase: the RISC 
pipeline introduces
longer control 
paths and adds 
bypasses, which 
are likely to be on 
the critical path.

Increase: it should 
be far easier to 
pipeline RISC uops 
once the CISC 
instructions 
Have been 
decoded/translated, 
leading to a higher 
performance 
machine (see 
modern x86 
machines).

17


