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Professor Krste Asanović

    Name:      <ANSWER KEY>    

This is a closed book, closed notes exam.
80 Minutes
 16 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and 

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not yet 

taken the quiz. If you have inadvertently been exposed to a quiz prior to taking 
it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without giving 
explanations if the instruction ask you to explain your choice.

 

Writing name on each sheet       ________       2 Points
Question 1 ________     30 Points
Question 2 ________     20 Points
Question 3 ________     28 Points

TOTAL        ________  80 Points

Name _________(answer key)________
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Question 1: Locking Performance 
(30 points)
While analyzing some code, you find that a big performance bottleneck involves many threads 
trying to acquire a single lock.  

Conceptually, the code is as follows:

Assume for all questions that our processor is using a directory protocol, as described in 
Homework #5 (also found in Appendix A).  

  int mutex = 0;
 
  while( true ) 
  {
    noncritical_code( );

    lock( &mutex );
    critical_code( );
    unlock( &mutex );
  }

Name _________(answer key)________
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Test&Set Implementation

First, we will use the atomic instruction test&set to implement the lock(mutex) and unlock
(mutex) functions.

In C, the instruction has the following function prototype:

	 int return_value = test&set(int* maddr);

Recall that test&set atomically reads the memory address maddr and writes a 1 to the 
location, returning the original value.   

Using test&set, we arrive at the following first-draft implementation for the lock() and unlock
() functions:

Q1.A: Test&Set, The Initial Acquire (5 points)
Let us analyze the behavior of Test&Set while running 1,000 threads on a 1,000 cores. 

Consider the following scenario: At the start of the program, the lock is invalid in all caches.  
Then, every thread executes Test&Set once.  The first thread wins the lock, while the other 
threads will find that the lock is taken.  How many invalidation messages must be sent when all 
1,000 threads execute Test&Set once?

1,000 Test&Sets are performed in the above scenario.

Test&Set is an atomic read-write operation and requires exclusive access to the lock’s address.  
Therefore, each Test&Set invalidates the previous core who performed Test&Set.  However, the 
first core had no one to invalidate, because the lock was initially uncached.  Therefore, 999 
invalidation messages were sent.

-1 points for off-by-one errors.

Invalidations  ___999__

void inline lock(int* mutex_ptr)
{
   while(test&set(mutex_ptr) == 1);
}

void inline unlock(int* mutex_ptr)
{
   *mutex_ptr = 0;
}

Name _________(answer key)________
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Q1.B: Test&Set, Spinning  (5 points)

While the first thread is in the critical section (the “winning thread”), the remaining threads 
continue to execute Test&Set, attempting to acquire the lock.  Each waiting thread is able to 
execute Test&Set five times before the winning thread frees the lock. How many invalidation 
messages must be sent while the winning thread was executing the critical section? 

999 cores are spinning, each executes T&S five times for a total of  4995 Test&Sets performed.

Each Test&Set invalidates the previous core who performed Test&Set.   Therefore, 4995 
invalidation messages were sent.

(This assumes that every thread is interleaved).  

-1 point for calculating for all 1000 threads spinning.

Invalidations  ___4995__

Q1.C: Test&Set, Freeing the Lock  (5 points)

How many invalidation messages must be sent when the winning thread frees the lock?  Assume 
the critical section is very long, and all 999 other threads have been waiting to acquire the lock. 

Freeing the lock involves writing to the lock’s address which requires invalidating anybody else 
who has cached that address.  Because all of the other cores are spinning on Test&Set, and only 
one core will have the lock address at a time, the winning lock will invalidate only the last core 
to perform a Test&Set.

Invalidations  ___1__

Name _________(answer key)________
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Test&Test&Set Implementation

Since our analysis from the previous parts show that a lot of invalidation messages must be sent 
while waiting for the lock to be freed, let us instead use the atomic instruction test&set to 
implement  Test&Test&Set. 

(Note: the loop evaluation is short-circuited if the first part is true; thus, test&set is only 
executed if (*mutex_ptr) does not equal 1).

Q1.D: Test&Test&Set, The Initial Acquire (5 points)

Let us analyze the behavior of Test&Test&Set while running 1,000 threads on a 1,000 cores. 

Consider the following scenario: At the start of the program, the lock is invalid in all caches. 
Then every thread performs the first Test (reading mutex_ptr) once.  After every thread has 
performed the first Test (which evaluates to False, because mutex == 0), each thread then 
executes the atomic Test&Set once.  Naturally, only one thread wins the lock. How many 
invalidation messages must be sent in this scenario? 

1,000 cores perform the first Test.  That requires read permissions and invalidates nobody (since 
the lock is initially invalid).  All 1,000 cores end up with a copy of the lock.

Then, all cores execute T&S.  The first T&S will invalidate the other 999 cores’ copy, for 999 
invalidations.

The other 999 T&S’s will invalidate the previous core to perform T&S, for 999 more 
invalidations.   In total 999+999 invalidations occur.

Invalidations  ___1998__

void inline lock(int* mutex_ptr)
{
   while( (*mutex_ptr == 1) || test&set(mutex_ptr) == 1);
}

void inline unlock(int* mutex_ptr)
{
   *mutex_ptr = 0;      
}

Name _________(answer key)________
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Q1.E: Test&Test&Set, Spinning  (5 points)

While the first thread is in the critical section, the remaining threads continue to execute 
Test&Test&Set.  Each waiting thread is able to execute Test&Test&Set five times before 
the winning thread frees the lock. How many invalidation messages must be sent while the 
winning thread was executing the critical section? 

Once the lock has been grabbed by the winning core, the other 999 threads will only see 
mutex == 1, and not execute the Test&Set.  Therefore, executing the 4995 Test&Test&Sets while 
waiting for the lock to be freed only requires read permissions.  

However, the very first Test&Test&Set will require downgrading the last core who performed a 
Test&Set operation to the Shared state, so it could be argued that 1 invalidation message was 
sent (technically, a WriteBackRequest message). So 0 invalidations occurred and 1 downgrade 
occurred. Either 0 or 1 would be acceptable answers.

Invalidations  ___0/1__

Q1.F: Test&Test&Set, Freeing the Lock  (5 points)

How many invalidation messages must be sent when the winning thread frees the lock for the 
Test&Test&Set implementation?  Assume the critical section is very long, and all 999 other 
threads have been waiting to acquire the lock. 

Freeing the lock will require invalidating the 999 shared copies held by the spinning threads.

-1 for off-by-one errors.

Invalidations  ___999__

Name _________(answer key)________
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Question 2: Sequential Consistency
(20 points)
For this question, we consider the implementation of sequential consistency (SC) in a multi-
processor system.  Each processor is a simple single-issue, in-order core.  Every core is 
connected to a bus which is directly connected to memory (as shown below).

Assume that the bus can only service a single memory operation every cycle.  If multiple cores 
contend for the bus, the memory operation from a randomly selected requesting core is chosen to 
proceed. All remaining cores trying to make a bus request will stall their pipeline until the bus 
can service their memory request.

Q2.A: Baseline (5 points) 

Our baseline memory system has no caches; instead, every memory operation is sent directly to 
main memory, where it is visible to all processors simultaneously. 

Does this system provide sequential consistency?  Explain why or why not.  If it does not 
provide SC, provide a simple code segment that shows how to break SC.

Yes, this is SC.

This exactly fits the definitive example of SC.  All cores execute memory operations in-order, 
and memory randomly picks one memory operation to execute atomically.  Once the memory 
operation is chosen by the bus/memory, it is now globally visible to all other cores.  Therefore, a 
valid in-order interleaving will be visible, and the same interleaving will be visible to all cores.

Core

Core

Core

Memory

Bus

Name _________(answer key)________
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Q2.B: Adding Write Buffers (5 points) 

We find that we are losing a lot of performance waiting for the bus, so it is proposed that we add 
a write buffer (WB) to each processor.  When a store occurs, it is inserted into the write buffer 
and the CPU can immediately continue.  

Stores still occur in-order out of a given write buffer. Also, loads must wait for the WB to drain 
before executing (note: stores are not globally visible until they leave the WB and are accepted 
by the memory system). 

Does this system provide sequential consistency?  Explain why or why not.  If it does not 
provide SC, provide a simple code segment that shows how to break SC. 

Yes, this is SC.

Memory operations are performed in-order, and the results of the stores are not visible to anyone 
until they leave the write buffer (even to the core that issued the store). 

Q2.C: Optimizing Loads (5 points) 

Waiting for the store buffer to drain before executing loads is terrible for performance. Instead, 
we propose that loads are allowed to execute even if the WB still has stores in it.  However, if the 
load reads the same address as a store in the WB, then the load (and all following instructions) 
stall until the WB drains.

Does this system provide sequential consistency?  Explain why or why not.  If it does not 
provide SC, provide a simple code segment that shows how to break SC.

Yes, this is SC.

Only loads that do not match stores in the WB can run ahead. Therefore, even though they are 
running ahead of the completion of some stores, they do not return a value that is not already 
visible to other cores. 

Also, one could argue that without caches, loads will still be performed in-order, behind the 
stores coming out of the WB.  In this case, loads can’t really “run ahead” if the WB has stores 
still in it, so this question degrades to Q2.B.  However, it would be higher performance to let 
loads get priority over the stores in the WB, because loads are on the critical path in the code.

Name _________(answer key)________
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Q2.D: Bypassing Loads (5 points) 

Let us now examine an alternative proposal for optimizing load performance.  For a lot of the 
code we are interested in, many of the loads match with the stores in the WB. 

Therefore, we propose to not allow loads to leave the processor until the WB has drained, but we  
will allow loads to be bypassed from the WB if the addresses match. 

Does this system provide sequential consistency?  Explain why or why not.  If it does not 
provide SC, provide a simple code segment that shows how to break SC. 

No, this is not SC.

Stores still in the WB are not globally visible to the other cores.  Therefore, bypassing loads out 
of this WB to the issuing processor will mean that different cores see a different record of the 
interleaving of memory operations.

initially X=0, Y=0

Core0          Core1
ST X=1      ST Y=1
LD Y          LD X
LD X          LD Y

Core 0 will get x,y = (1,0), because it bypasses the X=1 store out of the write buffer, but core 1's 
ST Y isn't yet visible to it.

Likewise, Core 1 will get x,y=(0,1), because it bypasses the Y=1 store out of its write buffer, but 
core 0's ST X isn’t yet visible to it!

So Core 0 thinks that Store X occurred before Store Y, but Core 1 thinks Store Y occurred before 
Store X. 

Thus, not SC.

Name _________(answer key)________
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Question 3: Directory Protocols
(28 points)
For this question we will optimize the directory protocol used in Homework #5 (found in 
Appendix A). 

Directory protocol performance can suffer from the latency of requesting and obtaining 
permission.  For the directory protocol used in Homework #5, an exclusive request (write 
operation) for a memory line already in the exclusive state W(id’) requires four messages: 

1) An exclusive request (ExReq) is sent to the directory from the requesting cache id.
2) A flush request (FlushReq) is sent to the current user id’ of the cache line.
3) A flush response (FlushRep) is sent back to the directory from the (former) user id’. 
4) An exclusive response (ExRep) is sent from the directory to the requesting cache id.

In this problem, we will look at adding a new three message system to optimize the above 
situation, an exclusive request to a memory line that is in the W(id’) state.  Note: we are not 
optimizing share requests, and we are not optimizing exclusive requests to shared memory lines.

Core 
id'

Core 
id Directory

(1) ExReq (2) FlushReq

(3) FlushRep(4) ExRep

Name _________(answer key)________
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Under the new three message proposal, an exclusive request to a memory line already in the 
W(id’) state behaves as follows:

1) An exclusive request (ExReq) message is sent to the directory from cache id.
2) A write-transfer request (WTransferReq) is sent from the directory to the current exclusive 

owner of the memory line (id’). 
3) A write-transfer response (WTransferRep), holding the data payload, is given to the 

requesting core (id) by the now former exclusive owner (id’) of the memory line  (this is a 
cache-to-cache message). 

4) The new owner (id) sends a write-transfer acknowledgement reply (WAckRep) to the 
directory once it receives the requested memory line from id’.

Core 
id'

Core 
id Directory

(1) ExReq (2) WTransferReq

(3) WTransferRep

(4) WAckRep

(Note: yes, four messages are still being sent, but the messaging critical path between a cache 
requesting write permission and receiving the write permission is now only three messages. The 
fourth message is just for the directory to know the handoff between caches completed).

Name _________(answer key)________
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We will add three new types of messages, highlighted in the following table:

Category Messages
Cache to Memory Requests ShReq, ExReq

Memory to Cache Requests WbReq, InvReq, FlushReq, WTransferReq
Cache to Memory Responses WbRep(v), InvRep, FlushRep(v),WAckRep
Memory to Cache Responses ShRep(v), ExRep(v)

Cache to Cache Responses WTransferRep

- memory to cache requests: WTransferReq
- The receiving core (id’) will be invalidated, and send its copy of the data to another core 

(using a WTransferRep message).
- cache to cache responses: WTransferRep

- The owner (id’) will send its copy of the memory line directly to another cache using 
this message.

- cache to memory responses: WAckRep
- The new owner (id) who requested exclusive access will acknowledge that he has 

received the data from core id’ by sending a WAckRep back to the directory.

Name _________(answer key)________
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Q3.A: Cache State Transitions (16 points)

Fill in the following table regarding cache state transitions to express this new protocol.  Notice 
that no new cache states are required to handle this new optimization.  However, the cache state 
protocol must now handle the new message types.   

No. Current State Handling Message Next State Dequeue 
Message?

Action

1 C-nothing Load C-pending No ShReq(id,Home,a)

2 C-nothing Store C-pending No ExReq(id,Home,a)

3 C-nothing WbReq(a) C-nothing Yes None

4 C-nothing FlushReq(a) C-nothing Yes None

5 C-nothing InvReq(a) C-nothing Yes None

6 C-nothing ShRep (a) C-shared Yes updates cache with prefetch data

7 C-nothing ExRep (a) C-exclusive Yes updates cache with data

7b C-nothing WTransferReq C-nothing Yes None

7c C-nothing WTransferRep C-exclusive Yes WAckRep(id, Home, a)

8 C-shared Load C-shared Yes Reads cache

9 C-shared WbReq(a) C-shared Yes None

10 C-shared FlushReq(a) C-nothing Yes InvRep(id, Home, a)

11 C-shared InvReq(a) C-nothing Yes InvRep(id, Home, a)

12 C-shared ExRep(a) C-exclusive Yes None

13 C-shared (Voluntary Invalidate) C-nothing N/A InvRep(id, Home, a)

13b C-shared WTransferReq C-nothing Yes InvRep(id, Home, a)

Table 3.A.I: Cache State Transitions for Cache Part I

Name _________(answer key)________
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exclusive permission for this line

voluntarily wrote back this line 
previously, but directory doesn’t 
know yet....

voluntarily flushed this line 
previously, but directory doesn’t 
know yet



Q3.A: Continued...

14 C-exclusive Load C-exclusive Yes reads cache

15 C-exclusive Store C-exclusive Yes writes cache

16 C-exclusive WbReq(a) C-shared Yes WbRep(id, Home, data(a))

17 C-exclusive FlushReq(a) C-nothing Yes FlushRep(id, Home, data(a))

18 C-exclusive (Voluntary Writeback) C-shared N/A WbRep(id, Home, data(a))

19 C-exclusive (Voluntary Flush) C-nothing N/A FlushRep(id, Home, data(a))

19b C-exclusive WTransferReq C-nothing Yes WTransferReq(id, new_owner, data
(a))

20 C-pending WbReq(a) C-pending Yes None

21 C-pending FlushReq(a) C-pending Yes None

22 C-pending InvReq(a) C-pending Yes None

23 C-pending ShRep(a) C-shared Yes updates cache with data

24 C-pending ExRep(a) C-exclusive Yes update cache with data

24b C-pending WTransferReq C-pending Yes None

24c C-pending WTransferRep C-exclusive Yes WAckRep(id, Home, a)

Table 3.A.II: Cache State Transitions Part II

Name _________(answer key)________
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Q3.B: Home Directory State Transitions (12 points)

Now let us consider the transitions for the home directory.  From the home directory’s point of 
view, the following actions take place:

1) The home directory receives an exclusive request (ExReq).
2) If the memory line is in the W(id’) state, the home directory issues a WTransferReq to the 

current owner (id’).
3) The memory line is put in the TW(id) state.
4) The home directory then waits for a WAckRep from the requesting core (id) to confirm the 

transfer completed.

Fill in the entries in the following table to implement this behavior.  The rest of the protocol will 
behave as before  (hint: not all of the entries in the protocol will change).

Note: not all entries are shown that are required to handle all corner cases.  Only focus on filling 
out the entries provided. 

Name _________(answer key)________
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No. Current State Message Received Next State Dequeue 
Message?

Action

1 R(dir) & (dir = ε) ShReq(a) R({id}) Yes ShRep(Home, id, data(a))

2 R(dir) & (dir = ε) ExReq(a) W(id) Yes ExRep(Home,id,data(a))

3 R(dir) & (dir = ε) (Voluntary Prefetch) R({id}) N/A ShRep(Home, id, data(a))

4 R(dir) & (id ∉ dir)
& (dir ≠ ε)

ShReq(a) R(dir + {id}) Yes ShRep(Home, id, data(a))

5 R(dir) & (id ∉ dir)
& (dir ≠ ε)

ExReq(a) Tr(id) No InvReq(Home,dir,a)

6 R(dir) & (id  ∉ dir)
& (dir ≠ ε)

(Voluntary Prefetch) R(dir + {id}) N/A ShRep(Home, id, data(a))

7 R(dir) & (dir = {id}) ShReq(a) R(dir) Yes None

8 R(dir) & (dir = {id}) ExReq(a) W(id) Yes ExRep(Home,id,data(a))

9 R(dir) & (dir = {id}) InvRep(a) R(ε) Yes None

10 R(dir) & (id ∈ dir)
& (dir ≠ {id})

ShReq(a) R(dir) Yes None

11 R(dir) & (id ∈ dir)
& (dir ≠ {id})

ExReq(a) Tr(dir -{id}) No InvReq(Home,dir-{id},a)

12 R(dir) & (id ∈ dir)
& (dir ≠ {id})

InvRep(a) R(dir - {id}) Yes None

13 W(id’) ShReq(a) Tw(id’) No WbReq(Home, id’, a)

14 W(id’) ExReq(a) Tw(id) Yes WTransferReq(home,id,a)

15 W(id) ExReq(a) W(id) Yes None

16 W(id) WbRep(a) R({id}) Yes data->mem

17 W(id) FlushRep(a) R(e) Yes data->mem

18 Tr(dir) & (id ∈ dir) InvRep(a) Tr(dir - {id}) Yes None

19 Tr(dir) & (id ∉ dir) InvRep(a) Tr(dir) Yes None

22 Tw(id) WackRep(a) W(id) Yes None

Table 3.B: Home Directory State Transitions, Messages sent from site id

END OF QUIZ

Name _________(answer key)________
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The whole point of the 
optimization...the real magic 
here! Telling the past owner to 
transfer the data to the new guy 
“id”.

This is the directory being told 
the transfer finished


