
Computer Architecture and Engineering
CS152 Quiz #1

February 14th, 2011
Professor Krste Asanović

 Name: <ANSWER KEY>

This is a closed book, closed notes exam.
80 Minutes
 15 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with other students who have not

yet taken the quiz. If you have inadvertently been exposed to a quiz prior
to taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple-choice answers without
giving explanations if the instruction ask you to explain your choice.

Writing name on each sheet ________ 2 Points
Question 1 ________ 18 Points
Question 2 ________ 30 Points
Question 3 ________ 30 Points

TOTAL ________ 80 Points

Name _________(answer key)________

Page 1 of 15

Question 1: Microprogramming (18 points)
In this question we ask you to implement a useful string instruction, string copy
(strcpy):

strcpy Rd, Rs

6 5 5 16
strcpy Rd Rs unused

The strcpy instruction provides the programmer the ability to copy a string directly
from one location in memory (M[Rs]) to another location in memory (M[Rd]).

For this problem, think of a string as an array of 4-byte words, with the last element being
zero (the string is “null terminated”).

Starting from the memory location addressed by Rs (M[Rs]), keep copying one 4-byte
word at a time to an other memory location, starting at the address M[Rd], until you hit
the null terminating character (zero). Do not forget to copy the null character too!

Finally, once the strcpy has finished, Rd and Rs will hold the address of the null
character at the end of their respective strings.

The instruction definition for strcpy requires that the strings pointed to by Rs and Rd
do not overlap in memory.

For reference, we have included the actual bus-based datapath in Appendix A (Page 16)
and a MIPS instruction table in Appendix B (Page 17). You do not need this information
if you remember the bus-based architecture from the online material. Please detach the
last two pages from the exam and use them as a reference while you answer this
question.

Q1.A (13 points)

Fill out Worksheet 1 for the strcpy instruction. You should try to optimize your
implementation to reduce the number of cycles necessary and to have as many signals be
“don’t cares” as possible. You do not have to worry about the busy signal. You may not
need all the lines in the table for your solution.

Name _________(answer key)________

Page 2 of 15

A few notes:

-LdIR is zero for all uops because we keep needing to read the actual values of Rs, Rd which are
stored in the IR register

-ldMA is kept at 0 when performing a memory operation because memory operations are multi-
cycle and thus you need to hold the memory address constant (this logic also applies to ldA,ldB
when used as sources for memory).

Name _________(answer key)________

Page 3 of 15

State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Ex
Sel

en
Imm

µBr Next State

FETCH0:MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *
. . .

NOP0:microbranch
back to
FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

strcpy:MA <- Rs;
A <- Rs

0 Rs 0 1 1 * * 0 1 * 0 * 0 N

B <- Mem 0 * * 0 0 1 * 0 0 0 1 * 0 N

MA <-Rd 0 Rd 0 1 0 0 * 0 1 * 0 * 0 N

Mem <- B
if (B==0)
 uBr to Fetch0

0 * * 0 0 0 COPY_B 1 0 1 1 * 0 Z FETCH0

Rs <- A+4 0 Rs 1 1 * * INC_A_4 1 * * 0 * 0 N

A <- Rd 0 Rd 0 1 1 * * 0 * * 0 * 0 N

Rd <- A+4
J to strcpy

0 Rd 1 1 * * INC_A_4 1 * * 0 * 0 J strcpy

Worksheet 1

Q1.B Changing the micro-architecture to speed up strcpy
(5 points)

You probably found the current micro-architecture presented in Appendix#A to be somewhat
awkward for implementing strcpy in Q1.A. In particular, a lot of information has to be
repeatedly re-read from the register file and moved back to the ALU to check for null-
terminating characters and updating addresses.

Can you think of a change to the datapath, ALU, and/or control logic that can improve the
performance (cycles / instruction) of strcpy? (hint: adding ALU operations that touch the ALU
operand B register may be helpful).

Also, please explain why your modification(s) will be an improvement.

There are quite a few ideas that would improve performance (here are a few):

Modification:
 Add a INC_B_4 alu op.

This allows you to keep one of the addresses permanently in register B, and increment it by 4
when necessary.

-OR-

Modification:
 Add a third ALU operand register C
 Add INC_B_4
 Add COPY_C

Keep Rs,Rd in registers A,B, and move the temporary value to C and check for the null-
terminator with COPY_C.

Name _________(answer key)________

Page 4 of 15

Question 2: Load Value Speculation (30 points)
In Lecture 4, we introduced a fully bypassed 5-stage MIPS pipeline. We have reproduced the
pipeline diagram below.

For this problem ignore branches and jumps.

Q2.A.i (2 points)

Even a fully bypassed 5-stage pipeline has to stall sometimes. Can you provide an instruction
sequence that would cause a stall in a fully bypassed 5-stage pipeline?

 LW R1, 0(R2)
	 ADD R2, R1, R0

Name _________(answer key)________

Page 5 of 15

Q2.A.ii (2 points)

How many bubbles get inserted into the pipeline due to the stall condition you produced in
Q2.A.i?

1 nop gets inserted

(stall dependent instruction in the Decode stage for one cycle, while waiting for load value to
become available and bypassed)

Q2.A.iii (2 points)

If 20% of all instructions are loads, and 50% of these loads are followed by dependent
instructions, what is the CPI of the typical fully bypassed 5-stage pipeline? Ignore control
hazards.

10% of all instructions cause a single-cycle stall, so CPI = 1.1

(if program was N instructions, that would take (N+0.1N) cycles to execute,
or CPI = (N+0.1N)/N = 1.1).

Name _________(answer key)________

Page 6 of 15

Q2.Part B

One way to get around this stall situation is to speculate that the loaded value returning from
memory will be zero (which is true relatively often).

Therefore, we can (1) mux in zero to the bypass mux in the Decode stage when the load value is
unavailable, and (2) set a bit to denote the load-use value is “speculated”. Once the load finishes,
(3) check if the load value was in fact “zero”. At the Writeback stage we can then (4) check for
misspeculations, (5) flush the pipeline if the load value was misspeculated, and (6) restart from
the PC of the instruction which used the misspeculated load value.

Again, for the purposes of this problem, ignore control hazards.

This new, proposed datapath is shown below:

Note: for the sake of clarity, some of the bypass lines and control signals have been removed
from the drawing, but this is still a fully bypassed pipeline.

Name _________(answer key)________

Page 7 of 15

Q2.B.i (4 points)

While a new datapath has been designed (shown above), we still need to get the control logic
right.

What is the logic that generates the “is_speculated?” signal in the Decode stage?

Is_Speculated? dec =

 	 (OPCEXE == LW)
	 && (RDEXE!=0)
	 && [((RDEXE==RS1DEC) && RE1DEC) || ((RDEXE==RS2DEC) && RE2DEC)]

OPC = opcode
RD	 = register-destination for instruction
RS1 = register-source #1
RE1 = register-enable for reg source #1
RS2 = register-source #2
RE2 = register-enable for reg source #2

You have to check that RD_exe is not writing to $0, because register $0 can not be modified (and
is always zero). You also need to check that the source register is actually used (read enable
signal) otherwise you could be bypassing and speculating when the register isn’t even used!
While neither of these two things actually hurt correctness (because you would be overly
conservative), it would kill performance.

Q2.B.ii(2 points)

What is the logic driving the “misspeculation” signal, as a misspeculation is detected in the
Writeback stage?

Misspeculation Wb =

	 	 is_speculated?MEM && !(is_zero?WB)

Name _________(answer key)________

Page 8 of 15

Q2.Part C

Q2.C.i(6 points)

To get a better understanding of how the pipeline behaves, please fill out the following
instruction/time diagrams for the following scenarios: 1) without any load-speculation, 2) with
load speculation and correctly speculated, and 3) with load speculation but misspeculated, using
the instruction sequence below (the load-use dependency has been bolded):

 I1: LW R1, 0(R2)
 I2: ADD R3, R1, R0
 I3: SUB R5, R0, R0
 I4: XOR R6, R0, R0
 I5: AND R7, R0, R0
 I6: OR R8, R0, R0

In each chart, the very first instruction (LW) has been done for you, as well as the first cycle of
the (ADD) instruction. Please fill out the rest of the diagrams for the remaining instructions. The
sequence of six instructions may finish before cycle t12.

Name _________(answer key)________

Page 9 of 15

Chart 1: Without Load Speculation (regular fully bypassed
5-stage pipeline)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

LW F D X M W

ADD F D D X M W

SUB F F D X M W

XOR F D X M W

AND F D X M W

OR F D X M W

Chart 2: With Load Speculation, and correctly speculated

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

LW F D X M W

ADD F D X M W

SUB F D X M W

XOR F D X M W

AND F D X M W

OR F D X M W

Chart 3: With Load Speculation, but misspeculated11/100-17

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

LW F D X M W

ADD F D X - F D X M W

SUB F D - F D X M W

XOR F - F D X M W

AND - F D X M W

OR F D X M W

Name _________(answer key)________

Page 10 of 15

Q2.C.ii(2 points)

Using the information you discovered in Q2.C.i (particularly Chart 3), how many bubbles are
inserted into the pipeline when a load value is misspeculated?

 4 bubbles, since we are killing the F, D, X, and M stages

-1 point for getting this wrong, but being consistent with the chart from Q2.C.i

Q2.Part D: Measuring CPI

Q2.D.i(2 points)

Assume that 100% of all load values that are speculated are correctly speculated (absolute best
case). If, for a given program, 20% of all instructions are loads, and 50% of those loads are
immediately followed by a dependent instruction, what is the CPI?

CPI = 1

(since the load-uses are being perfectly predicted, no stalls occur)

Q2.D.ii(2 points)

Let us be more realistic. Assume for a given program that 20% of all instructions are loads, and
25% of all loads in the program return a load value of zero.

Also assume that 50% of all loads are followed immediately by a dependent instruction (also
assume that there is no correlation between loads that return zero and loads that are followed by
dependent instructions).

What is the new CPI?

15% of loads are misspeculated, but only half of these are actually followed by a dependent
instruction, so 7.5% of all instructions cause a misspeculated load-use.

For a program of N instructions, CPI = (N+0.075NX) /N, where X is the number of bubbles that
get inserted (4, as found in Q2.C.ii).

so CPI = (N+0.3N)/N
 = 1.3

Name _________(answer key)________

Page 11 of 15

Q2.D.iii(2 points)

What fraction of loads must be correctly speculated for the new datapath to be worthwhile?

Let Y be the fraction of instructions that cause 4 bubbles to be added due to a misspeculation
(i.e., the fraction of loads that return non-zero AND are followed by a dependent instruction)
Let N be the number of instructions in the program

CPI without load speculation is 1.1 (as found in Q2.A.iii)

CPI = (N+4YN)/N = (1+4Y)

Set equal to 1.1 and solve to find the break-even point:

1.1 = 1+4Y
0.1 = 4Y
Y = 0.025, or 2.5%

Only 2.5% of all instructions are allowed to cause a pipeline kill due to a misspeculation.

As mentioned before, if we assume that 20% of all instructions are loads, and 50% of these loads
are followed by dependent operations then:

10% of all instructions can cause a misspeculation, and since only 2.5% of all instructions are
allowed to be mispredicted, then 75% of all loads must be correctly speculated (non-zero).

Q2.Part E: A Better Datapath?

Q2.E.i(4 points)

As you have shown in previous parts, the penalty of flushing the entire pipeline is very high.
Propose a new datapath that can do better. Describe its control in words.

On a misspeculation, bypass all instructions and state back a cycle and re-execute them (the X op
will now have the correct load value). This requires adding more state (inst registers) to allow
for re-executing a stage again and bypass paths to recycle all of the state back a cycle.

(+2/4) was given for saying “move the misspeculation logic to the Memory stage”. This only
says 1 out of 4 bubbles, and it pushes a lot of logic onto the critical path that dramatically hurts
seconds/cycle (Mem->Zero Compare->Misspec Calc->Broadcast Kill->Mux in NOP

Name _________(answer key)________

Page 12 of 15

(+3/4) was given for adding an ALU to the Memory stage to redo misspeculations without
stalling the pipeline. This still breaks down for instructions that memory ops that depend on that
result.

Question 3: Iron Law of Processor Performance

(30 points)

Mark whether the following modifications will cause each of the three categories to increase,
decrease, or whether the modification will have no effect.

Assume the rest of the machine remains unchanged. Also, we are measuring these metrics from
the viewpoint of the user-code. Thus, an Operating System call will simply appear to be a single
instruction that takes many, many cycles to execute.

Explain your reasoning to receive credit.

-2 points for each wrong cell.

“Not ISA visible” means that no change to the actual binary occurs (since the change doesn’t
affect the ISA which is a contract between the hardware microarchitect and the software
programmer/compiler).

Name _________(answer key)________

Page 13 of 15

Name _________(answer key)________

Page 14 of 15

Instructions / Program Cycles / Instruction Seconds / Cycle

a)

move branch/jump
logic from the
Execute stage to the
Decode stage

unchanged

(not ISA visible)

decreases

(less NOPs inserted by having
earlier branch resolution)

increases

(instead of using ALU in X,
we add a comparator to

Decode, and lengthen the
cycle by having a reg-reg

comparision in Decode after
the bypass muxes, which then
influences the PC_mux in the

IF stage)

b)

Modifying the ISA
(and thus the micro-
architecture) to use
hardware
interlocking instead
of software
interlocking for
both branch delay
slots and load-use
delay slots

decreases

(do not have to insert NOPs to
fill delay slots)

increases

(sometimes we have to stall for
load-use dependencies now, and
execute NOPs for misspeculated

branches)

(probably) increases

(control logic added that must
stall certain stages or insert

NOPs when misspeculations
occur)

-1 for “no change”

c)

Removing a
complex instruction
from the hardware
implementation,
and instead execute
it by throwing an
illegal opcode trap
and letting the
exception handler
execute the
instruction in
software

unchanged

(not ISA visible)

increase

(a lot of software instructions will
have to be executed to perform a

single complex instruction)

decrease

(hopefully removing the
complex instruction will
simplify the pipeline in a

manner that decreases Secs/
Cycle)

-1 for “no change”

Name _________(answer key)________

Page 15 of 15

Instructions / Program Cycles / Instruction Seconds / Cycle

d)

Change the ISA
from 32-bits to 64-
bits (i.e., all
registers in the
Register File are
now 64-bits wide
and the ALU
performs 64-bit
operations).

decrease

(64-bit ops won't require being
synthesizing from multiple 32-bit

versions)

-1 for “no change” unless the
answer was qualified by stating

no 64-bit arithmetic occurs in the
program

unchanged

(widening the datapath doesn't
change the logic in the pipeline)

- OR -

increases

more cache misses occur (because
ints and address pointers are now
64bits which decrease the number
of variables that will fit inside the

caches)

increases

(bigger registers, wider
datapaths, and larger ALUs

will all work to increase Secs/
Cycle)

e)

Merge the Decode
and Execute stages
into a single stage
(i.e., perform a
register read, then
an ALU execution
in the same cycle).

unchanged

(not ISA visible)

decreases

will decrease due to branches/
jumps

in more detail:

if branches resolved in Decode,
branch CPI goes down because
we no longer must interlock for

branch dependent on a load

if branches resolved in Execute,
branch CPI goes down because

instead of eating two cycles on a
mispredict, we only lose 1

(because of the merged Dec+Exe)

-1 for not explaining which
hazards are resolved

increases

(more work to fit into a single
stage)

