
C152 Laboratory Exercise 3

Professor: Krste Asanovic
TA: Christopher Celio

Department of Electrical Engineering & Computer Science
University of California, Berkeley

March 7, 2012

1 Introduction and goals

The goal of this laboratory assignment is to allow you to conduct a variety of experiments in both
the Simics simulation environment and in the Chisel simulation environment.

Using the Simics Microarchitectural Interface and an out–of–order execution processor model,
you will collect statistics and make some architectural recommendations based on the results.

With regards to Chisel, you will be provided a complete implementation of a speculative out–
of–order processor with which you can run experiments on. Students will analyze the design and
make recommendations for future development. You can also choose to improve the design as part
of the open-ended portion.

The lab has two sections, a directed portion and an open–ended portion. Everyone will do the
directed portion the same way, and grades will be assigned based on correctness. The open–ended
portion will allow you to pursue more creative investigations, and your grade will be based on the
effort made to complete the task or the arguments you provide in support of your ideas.

Students are encouraged to discuss solutions to the lab assignments with other students, but
must run through the directed portion of the lab by themselves and turn in their own lab report.
For the open-ended portion of each lab, students can work individually or in groups of two or
three. Any open-ended lab assignment completed as a group should be written up and handed in
separately. Students are free to take part in different groups for different lab assignments.

You are only required to do one of the open ended assignments. These assignments are in
general starting points or suggestions. Alternatively, you can propose and complete your own open
ended project as long as it is sufficiently rigorous. If you feel uncertain about the rigor of a proposal,
feel free to consult the TA or professor.

This lab assumes you have completed the earlier laboratory assignments. However, we will
re-include all the relevant files from past labs in this lab’s distribution bundle for your convenience.
Furthermore, we will assume that you remember all the commands used in earlier labs for controlling
Simics simulation. If you feel any confusion about these points, feel free to consult the earlier labs
or the Simics User Guide.

1.1 Simics MAI Overview

The Simics simulator by default assumes that every instruction completes instantaneously in a
single cycle. This allows for speedy simulations that are useful for software/firmware correctness

1

testing. As we saw in previous labs, Simics can be extended with memory hierarchy timing modules
to model realistic performance effects of a user-defined memory hierarchy. These extensions increase
simulation realism at the expense of simulation speed.

In this lab, we will make use of further extensions which allow an instruction’s execution to
be delayed according to a microarchitectural model. This model can be programmed to simulate
the timing behavior of the instructions as if they were being run on an in-order or out-of-order
execution (OoO) processor. Microarchitectural models interact with Simics execution via the Micro-
Architectural Interface.

Microarchitecturally accurate models are coded using C or the Simics Device Modeling Lan-
guage. For this lab, we will use MAI modules included with Simics, rather than code our own.
Specifically, we will use the MAI extension for the Sunfire UltraSPARC II processor (the Bagle
machine). This extension allows for out-of-order execution, branch target speculation, and includes
a memory hierarchy as well.

Several new variables are exposed to the user when working with MA models. The user can
configure the width of the pipeline (the number of instructions allowed to fetch, execute, retire or
commit in a single cycle), the size of the reorder buffer, whether instructions must retire in-order,
and several memory hierarchy parameters related to OoO. The variables will be discussed as they
are needed in the following lab sections.

When running in MA mode, Simics tracks dependencies of several varieties (register, control
and memory) that exist in the instruction stream. It then places the instructions in a structure
called an instruction tree — for the machine we are simulating, the instruction tree tracks the same
state as the reorder buffer and associated structures would in an actual processor. This tree can be
examined with the command print-instruction-queue. A load–store queue is also simulated.

The Simics microarchitecture simulator we will use in this lab speculates on branches by filling
the instruction tree with instructions from both branch paths. Speculated instructions may only
commit when their preceding branches have resolved. This behavior is notably different from the
actual execution of many real out-of-order processors, but produces similar performance effects.
The simulator we are using speculatively predicts branch target addresses.

The execution of instructions is divided into 6 stages (init, fetch, decode, execute, retire, commit)
and instructions are only allowed to advance to the next stage when all applicable dependencies
have been satisfied. In this way, instructions are allowed to execute out of order but may accumulate
a multi-cycle delay appropriate to the underlying microarchitecture of the simulated processor.

A point worthy of note is that steps and cycles are no longer necessarily equivalent. A step
occurs whenever an instruction commits. Advancing the simulation by one cycle may mean that
multiple steps occur, or that none do. Similarly, advancing the simulation by one instruction may
pause the simulation in the middle of a cycle. For this reason, it is advisable to use the step-cycle
or run-cycles command to advance simulation, and then simply measure the number of steps that
have occurred.

See the Simics MAI User Guide included with this lab for more information about any of these
topics.

1.2 Chisel & The Berkeley Out–of–Order Machine

In addition to Simics, we will also be re-introducing Chisel. The infrastructure is nearly identical
to Lab 1, with the addition of a new processor, the RISC-V Berkeley Out–of–Order Machine,
or “BOOM”. BOOM is heavily inspired by the MIPS R10k and the Alpha 21264 out–of–order

2

processors[1, 2]. Like the R10k and the 21264, BOOM is a unified physical register file design (also
known as “explicit register renaming”). BOOM is (currently) a single-issue processor.

The BOOM Pipeline

Branch
Prediction

Fetch

Fetch
Buffer

Decode Register
Rename

Dispatch Issue

Issue Window

ALU
Unified

Register
File

2R,2W

Execute

Data
Mem

addr

wdata
rdata

LAQ

SAQ

SDQ

Memory WB

ROB

RenameDecodeFetch RegisterRead

Commit

Br
Logic

Resolve
Branch

Figure 1: The Berkeley Out of Order Machine Processor.

Conceptually, BOOM is broken up into 10 stages: Fetch, Decode, Register Rename, Dispatch,
Issue, Register Read, Execute, Memory, Writeback, and Commit. However, many of those stages
are combined in the current implementation, yielding six stages: Fetch, Decode/Rename/Dispatch,
Issue/RegisterRead, Execute, Memory, and Writeback (Commit occurs asynchronously, so I’m not
counting that as part of the “pipeline”).

Fetch Instructions are fetched from the Instruction Memory and placed into a four-
entry deep FIFO, known as the fetch buffer.1

Decode Decode pulls instructions out of the fetch buffer and generates the appropriate
“micro-op” to place into the pipeline.2

Rename The ISA, or “logical”, register specifiers are then renamed into “physical”
register specifiers.

Dispatch The instruction is then dispatched, or written, into the Issue Window.

Issue Instructions sitting in the Issue Window wait until all of their operands are ready,
and are then issued. This is the beginning of the out–of–order piece of the pipeline.

1While the fetch buffer is four-entries deep, it can instantly read out the first instruction on the front of the FIFO.
Put another way, instructions don’t need to spend four cycles moving their way through the fetch buffer if there are
no instructions in front of them.

2Because RISC-V is a RISC ISA, nearly all instructions generate only a single micro-op, with the exception of
store instructions, which generate a “store address generation” micro-op and a “store data generation” micro-op.

3

RF Read Issued instructions first read their operands from the unified physical register
file...

Execute and then enter the Execute stage where the integer ALU resides. Issued
memory operations perform their address calculations in the Execute stage, and
then store the calculated addresses in the Load/Store Unit which resides in the
Memory stage.

Memory The Load/Store Unit consists of three queues: a Load Address Queue (LAQ),
a Store Address Queue (SAQ), and a Store Data Queue (SDQ). Loads are fired to
memory when their address is present in the queue and does not conflict with any
of the store addresses that the load depends on.3 Stores are fired to memory at
commit time, when both its address and its data are present.

Writeback ALU operations and load operations are written back to the physical reg-
ister file.4

Commit The Reorder Buffer, or ROB, tracks the status of each instruction in the
pipeline. When the head of the ROB is not-busy, it commits the instruction. For
stores, the ROB signals to the store at the head of the Store Queue that it can
now write its data to memory.

BOOM supports full branch speculation and branch prediction. Each instruction, no matter
where it is in the pipeline, is accompanied by a branch tag that marks which branches the instruction
is “speculated under”. A mispredicted branch requires killing all instructions that depended on
that branch. When a branch instructions passes through Rename, copies of the Register Rename
Table and the Free List are made. On a mispredict, the saved processor state is restored.

The Decode stage contains a Branch History Table, composed of simple n-bit history counters
indexed by PC. On a predicted branch, the Decode stage kills the fetch buffer and redirects the
Fetch stage. Otherwise, the Fetch stages fetches along PC+4.5

In this lab, BOOM implements a basic set of instructions from RV32. BOOM does not support
sub-word memory accesses, floating point, or exceptions. Also, just like the simple pipelines from
Lab 1, BOOM is connected to a magic, single-cycle memory (there are no caches or memory
hierarchy). However, bypasses have been removed, meaning that the use-delay on back-to-back
instructions is three cycles. Therefore, out–of–order issue is still an important component to good
performance.

1.3 Graded Items

You will turn a hard copy of your results to the professor or TA. Some of the open-ended questions
also request emailing source code to the TA. Please label each section of the results clearly. The
following items need to be turned in for evaluation:

3Technically, the load could bypass the data it needs out of the SDQ if it found a match in the SAQ. However,
BOOM at this time does not support the bypassing of load data out of the SDQ. Problem 3.1 covers this issue in
more detail.

4While BOOM is a single-issue processor, it does provide ALU operations and memory operations each their own
write port, meaning the register file is a two-read, two-write register file (two different destinations can be written
simultaneously).

5As of the writing of this handout, BOOM does not use a Branch Target Buffer, which would allow BOOM to
redirect the PC in the Fetch stage.

4

1. Problem 2.3: Simics: CPI statistics for each benchmark and answers

2. Problem 2.4: Simics: CPI statistics for all configurations and answers

3. Problem 2.6: Chisel: CPI and branch predictor statistics and answers

4. Problem 2.7: Chisel: Issue Window statistics, and answers

5. Problem 2.8: Chisel: Issue Window statistics, instrumentation code, and answers

6. Problem 3.1/3.2/3.3/3.4/3.5 modifications and evaluations (include source code if required)

7. Problem 4: Feedback on this lab

2 Directed Portion

Simics: Directed Portion

The first two questions of this lab will cover Simics. Utilize checkpoints and the scripts you wrote
in Lab 2 to facilitate your data collection.

2.1 Simics: General Methodology

While you must ensure you are capturing a representative portion of the program’s execution, you
can measure instruction execution statistics whenever you like with ptime or logging.

For maximum efficiency, you should make sure that you are making use of all three operation
modes of Simics. You only want to run in the slow, highly detailed modes when it is necessary to
do so in order to collect accurate data.

The general methodology of this lab is:

1. Start Simics in fast mode, but use an MA-extended machine

2. Mount the host file system and load the appropriate files

3. Checkpoint the system

4. Restart Simics in stall mode and begin executing benchmark code to warm the caches

5. Checkpoint the system

6. Restart Simics in MA mode and collect OoO data

During this process Simics may report errors depending on which mode you are using and
whether or not you are starting from a checkpointed simulation. If your simulation still runs after
an error is reported, then simply disregard it.

You can use any of the t7400-{1,2,3,...,12}.eecs instructional servers to complete this lab
assignment. Do not wait until the night before the assignment is due, because you will face resource
contention that may significantly increase the time it takes to complete the assignment.

5

2.2 Setup

Start Simics in -fast mode, using the targets/sunfire/bagle-ma-common.simics script. Make
sure the host filesystem or workspace is mounted and that the benchmark binaries and input files
are copied into the target machine. To save time in the following sections, you should create a
checkpoint that has all the files loaded, and probably a checkpoint at each of the initial magic
breakpoints in the benchmark programs. Unfortunately, while the target machine being simulated
is the same as in some previous labs, the underlying Simics modules used in the simulation are
different (they use the MAI), so you will not be able to use checkpoints created in past labs.

2.3 Simics: Collecting CPI statistics using the MAI

In this section you will collect information on the instruction level parallelism inherent to the
benchmark programs. You will do this by running the benchmarks on a simulated superscalar
out-of-order processor and measuring the average number of instructions executed per cycle.

Remember to enable magic breakpoints. When you start from a checkpoint you may see an
error relating to the ‘last_cache’ component. Disregard this error.

For each benchmark:

• Start Simics in stall mode, and if you don’t already have a checkpoint saved, run the bench-
mark program (bzip_sparc, mcf_sparc, soplex_sparc).
host$./simics -stall -c bzip_bagle_files_loaded.conf
simics> c
target# ./<benchmark>_sparc input.<jpg/in/mps>

• It will reach a magic breakpoint and the simulation will pause.

• Run for at least 100,000,000 instructions to warm the cache. You can check its statistics the
same way we did in Lab 2. By default for this lab instruction accesses are instantaneous and
not cacheable, and only data accesses are stored in the cache:
simics> c 100_000_000
simics> cache_cpu0.statistics

• Create a checkpoint. This will be useful to you for the remaining sections of the lab assign-
ment.
write-configuration bzip_bagle_warmed_caches.conf

• Start Simics in -ma mode. When you start from a checkpoint you may see an error relating to
the ‘last_cache’ component. Disregard this error. Set the OoO parameters to the desired
values:
host$./simics -ma -c bzip_bagle_warmed_caches.conf
simics> ma_cpu0->fetches_per_cycle = 4
simics> ma_cpu0->execute_per_cycle = 4
simics> ma_cpu0->retires_per_cycle = 4
simics> ma_cpu0->commits_per_cycle = 4
simics> cpu0->reorder_buffer_size = 32

• Run for at least 10,000,000 cycles and count the number of instructions that commit in this
time frame. The MAI-enabled processor automatically reports the number of steps that have

6

occurred every million cycles (this count is cumulative). The step count is incremented every
time an instruction commits.
simics> run-cycles 11_000_000

• When you have collected enough data, halt Simics and proceed to the next benchmark.

For each benchmark, record the number of cumulative instructions executed in the span of
cycles that you measured. What is the recorded CPI for each benchmark? Which benchmark had
the best CPI, and which had the worst?

2.4 Collecting data about the effect of superscalar pipeline width on CPI

In this section, you will use the bzip benchmark and examine the effects of superscalar issue width
on CPI for bzip. To do this, vary the parameters of the ma_cpu0 object.

simics> ma_cpu0->fetches_per_cycle = <width>
simics> ma_cpu0->execute_per_cycle = <width>
simics> ma_cpu0->retires_per_cycle = <width>
simics> ma_cpu0->commits_per_cycle = <width>
simics> cpu0->reorder_buffer_size = 32

Vary all widths together though {1, 2, 4, 8, 16}, while keeping the reorder buffer size at 32. Then
repeat with a reorder buffer size of 64. Are there diminishing returns on increasing pipeline width?
How does reorder buffer size affect this performance? What factors might limit the effectiveness of
increasing pipeline width?

Chisel: Directed Portion

The next three questions in the directed portion of the lab use Chisel. A tutorial on the Chisel lan-
guage can be found at (http://www-inst.eecs.berkeley.edu/~cs152/sp12/handouts/chisel-tutorial.
pdf). Although students will not be required to write Chisel code as part of this lab, students will
need to write instrumentation code in C++ code which probes the state of a Chisel processor.

WARNING: Chisel is an ongoing project at Berkeley and continues to undergo rapid devel-
opment. Any documentation on Chisel may be out of date, especially regarding syntax. Feel free
to consult with your TA with any questions you may have, and report any bugs you encounter.
Likewise, BOOM will pass all tests and benchmarks for the default parameters, however, changing
parameters or adding new branch predictors will create new instruction interleavings which may
expose bugs in the processor itself.

2.5 Setting Up Your Chisel Workspace

To complete this lab you will log in to an instructional server, which is where you will use Chisel
and the RISC-V tool-chain.

The tools for this lab were set up to run on any of the twelve instructional Linux servers
t7400-1.eecs, t7400-2.eecs, ..., t7400-12.eecs. However, it is possible to download the
Chisel lab directory to your Mac or Linux machine. The only requirement is that you install
the Scala Build Tool (SBT) locally on your machine (the instructions to do so are found in the

7

${LAB3ROOT}/README). There are only two drawbacks: 1) you cannot compile your own RISC-V
binaries6, and 2) the compilation of the generated C++ code of BOOM can take significant amounts
of memory.7

First, download the lab materials8 9:

inst$ cp -R ~cs152/Lab3 ./Lab3

inst$ cd ./Lab3
inst$ export LAB3ROOT=$PWD

We will refer to ./Lab3 as ${LAB3ROOT} in the rest of the handout to denote the location of the
Lab 3 directory (note: this only holds the Chisel part of this lab, not the Simics part!).

The directory structure is shown below:

• ${LAB3ROOT}/

– doc/ Useful documentation and related materials.

– runall.sh Run this script to build BOOM and run all tests on it.

– test/ Source code for benchmarks and tests.

∗ riscv-bmarks/ Benchmarks written in C.

∗ riscv-tests/ Tests written in assembly.

– chisel The Chisel source code.

– Makefile The high-level Makefile

– src/
∗ rv32 boom/ Chisel source code for the BOOM processor.

– emulator/
∗ common/Common emulation infrastructure shared between all processors.

∗ rv32 boom/ C++ simulation tools and output files.

– sbt/ Chisel/Scala voodoo. You can safely ignore this directory.

The following command will set up your bash environment, giving you access to the entire
CS152 lab tool-chain. Run it before each session:10

inst$ source ~cs152/tools/cs152.bashrc

6Contact your TA if you would really like to compile your own RISC-V binaries locally. This requires access to the
riscv-gcc source code and an enterprising individual who can install the riscv-gcc tool-chain without TA supervision.

7Regarding the computation and memory required in compiling the C++ simulator of BOOM, the entire build
and test process should take no more than five minutes. However, if you are hitting the swap space on your local
machine, it could last easily over an hour. On the t7400 machines, your TA has timed the entire build and test time
as taking two and a half minutes. However, this requires using at least gcc 4.4, and keeping -debug off. Compiling
under -O0 can also dramatically speed up compile time, at a huge hit to run-time performance.

8The capital “R” in “cp -R” is critical, as the -R option maintains the symbolic links used.
9The actual name of the Lab3 directory might have letters appended to it to denote different versions. Newer

versions will be necessary as bugs are ironed out.
10Or better yet, add this command to your bash profile.

8

To compile the Chisel source code for BOOM, compile the resulting C++ simulator, and run
all tests and benchmarks, run the following Bash script:

inst$ cd ${LAB3ROOT}/
inst$./runall.sh

To “clean” everything, simply run the same script with an additional parameter:

inst$./runall.sh clean

2.6 Chisel: Gathering the CPI and Branch Prediction Accuracy of BOOM

For this problem, collect and report the CPI and branch predictor accuracy for the benchmarks
median, mix manufacturing, multiply, qsort, towers, and vvadd. You will do this twice for BOOM:
with and without branch prediction turned on. First, turn off branch prediction as follows:

inst$ vim ${LAB3ROOT}/src/rv32_boom/consts.scala

Change the line USE_BRANCH_PREDICTION to be set to “false”. Then compile the resulting
simulator and run it through the benchmarks as follows:

inst$ cd ${LAB3ROOT}/
inst$./runall.sh
inst$ cd ${LAB3ROOT}/emulator/rv32_boom/
inst$ grep \# *.riscv.out

The script runall.sh drives the Makefile you interacted with in Lab 1, which compiles the
Chisel code into C++ code, then compiles that C++ code into a cycle-accurate simulator, and
finally calls the RISC-V front-end server which starts the simulator and runs a suite of tests and
benchmarks on the target processor. The “grep” command is reading the *.out files and pulling
out the Tracer statistics.

Do this again, but with branch prediction turned on (keep the branch predictor on for the rest
of the lab).11

The default parameters for BOOM are summarized in Table 1.While some of these parameters
(instruction window, ROB, LD/ST unit) are on the small size, the machine is generally well fed
because it only fetches and dispatches one instruction at a time, memory is always one cycle away,
and the pipeline is only six cycles long.12

Compare your collected results with the in-order 5-stage processor. Notice that BOOM is a 6-
stage processor (with no bypassing), so it can be most closely compared to the in-order 5-stage with

11The branch predictor provided with BOOM is a branch history table made up of 128 two-bit counters, indexed
by PC.

12Also, by keeping many of BOOM’s data structures small, it keeps compile time fast and allows us to easily
visualize the entire state on the machine when viewing the *.out files generated by simulation.

9

Table 1: Default BOOM Parameters.

Register File 64 physical registers
Inst Window 4 entries

ROB 8 entries
LD Queue 4 entries
ST Queue 4 entries

Max Branches 4 branches

Table 2: CPI for the in-order 5-stage pipeline and the out-of-order “6-stage” pipeline. Fill in the rest of the
table.

median mix multiply qsort towers vvadd
5-stage (bypassed) 1.49 1.66 1.52 1.41 1.11 1.22

5-stage (interlocked) 1.75 3.32 1.81 1.88 1.44 1.89
BOOM (PC+4)
BOOM (BHT)

no bypassing (i.e., interlocked). Explain the results you gathered. Are they what you expected?
Was out-of-order issue an improvement on the CPI for these benchmarks? Was using a BHT in
the Decode Stage always a win for BOOM? Why or why not? (Don’t forget to include the accuracy
numbers of the branch predictor!).

Additional Notes: Jump and Jump-and-Link are predicted as always taken. The CPI is
calculated at the Commit stage. Finally, the branch predictor accuracy is calculated based on the
signals in the Execute stage, which means that the reported accuracy is also including mispeculated
instructions.13

Warning: the generated *.out files can become very large (a total of 650MB in size), and the
Instructional machines may silently decide to stop writing the printout information to them. Al-
though this lab should fit within your 800MB quota, you can also create a directory on /home/tmp,
which has no quota but is also not backed up to tape. The program /share/b/bin/mkhometmpdir
creates a directory for you at /home/tmp/ (visit http://inst.eecs.berkeley.edu/share/b/pub/
disk.quotas for details).

2.7 Chisel: Analyzing the Issue Window, Part I

BOOM currently only supports single-issue: all stages of the pipeline handle only a single instruction
at a time. However, it is more than possible to implement an out-of-order processor that allows
different stages to handle different amounts of instructions at a time (for example, committing two

13Also, the branch predictor itself is updated in the Execute stage. This is an interesting design choice; one could
easily have chosen to only update the branch predictor at Commit so the predictor is only learning “true” branches.

10

instructions at a time for a single-issue machine makes a considerable amount of sense. Why?14).
In fact, for this problem, your TA is wondering “Just how much performance is being left on

the table by only allowing one instruction to be issued out of the Issue Window at a time?”
Your job is to quantify this, and answer your TA’s question.
You will solve this question by writing C++ code in the “Out–of–Order Tracer” object that

probes the state of BOOM every cycle. OOOTracer is found in emulator/rv32 boom/oootracer.cpp/.h.
It is the same Tracer object you saw in Lab 1, with a few modifications. For this question, you
will add any counters you need in the appropriate locations.15 The main piece of your logic will
go into the Tracer_t::monitor_issue_window() function. Read the instructions provided in
oootracer.cpp for additional information. See Appendix A for details on how the Issue Window
works.

To answer this question, count the number of cycles in which at least two issue slots
are requesting to be issued. Make sure you are only counting cycles in which the StatsEnable
co-processor register is asserted.

Some sample code is provided in Tracer_t::monitor_issue_window() to show how to detect
that issue slot #0 is “valid”.

For all six benchmarks, report how many cycles contain two instructions requesting to be
issued. Do you think it would be beneficial to issue up to two instructions every cycle out of the
issue window?

2.8 Chisel: Analyzing the Issue Window, Part II

Issuing two instructions simultaneously could be very expensive: it would require adding two more
read ports and a third write port to the register file to handle the worst case of two ALU operations
being issued and writing back in the same cycle that a load from memory comes back.

Instead, your TA proposes to issue two instructions simultaneously if and only if one instruction
is an ALU operation and the second instruction is a memory operation. This will require adding
a second ALU to perform address calculations, and an additional read port to read out the base
address or store data required for load and store micro-ops.

To answer this question, augment your previous C++ probing code by checking the micro-op
code, or “uopc” tag, on each issue slot (See Figure 2): count the number of cycles in which
at least one ALU micro-op and one memory micro-op requests to be issued. The values
of each “uopc” can be found in src/rv32_boom/consts.scala (roughly lines 172-210).

Consider any non-Load and non-Store to be an ALU operation, for the purposes of this question.
Report your results for the benchmarks, and attach your C++ code in an appendix of your

lab report. Having collected data for Sections 2.7 and 2.8, what is your final recommendation on
supporting multiple issue in BOOM? Is single-issue out of the Issue Window good enough, or would
ALU/Mem dual-issue or even full dual-issue be worth the added costs?

14Solution to thought question: because waiting on hazards to resolve can back the machine up, potentially making
the ROB commit the bottleneck.

15Grep for “Step”.

11

3 Open-ended Portion

3.1 Analyzing the BOOM Load/Store Unit Design

You are a new employee at Processors-R-Us charged with analyzing the Load/Store Unit design
of your company’s latest offering. Under heavy pressure to make the looming tape-out deadline
(contracts with your customers are pretty strict), the lead processor architect and your boss, Chris,
decided to cut corners on the Load/Store Unit to make the shipping date: the current design
does not bypass load values out of the Store Data Queue (SDQ). Concerned with the
potentially enormous performance loss, you decide to investigate.16

Probe the Load/Store Unit, in a manner similar to Question 2.7, to analyze how much perfor-
mance is being left on the table by not bypassing load values from dependent stores. Monitor the
Load Address Queue and track how often a load has a valid address waiting to be fired to memory,
but is held up by a matching store address with valid data held in the SDQ. Remember: you do
not know when to bypass store data to a load until the load address is valid, the store address is
valid, and the store data is valid. Also, make sure you are only comparing against stores the load
depends on (use the store mask).

Attach your code in an appendix of your lab report. Describe exactly how you are quantifying
the performance lost, and make a case for your final recommendation: is it worth missing the
shipping deadline for the improved performance? Try your best to quantify how much CPI is being
lost.

See Appendix D and Figure 3 for more information on the Load/Store Unit.

3.2 Branch predictor contest: The Chisel Edition!

Currently, BOOM uses a simple Branch History Table of 128 two-bit counters; the same design
used by the MIPS R10k (except the R10k used 512 entries). For this problem, your goal is to
implement a better branch predictor for BOOM.

A good design to try is the Alpha 21264’s “tournament” branch predictor[1]. It consists of a
three sets of n-bit counters; a “global” history predictor indexes a set of 2-bit counters using a
global history register; a “local” history predictor that uses the PC to index a table of local history
registers which are then used to index a set of 3-bit counters; and an “arbiter” predictor which
indexes a table of 2-bit counters using the PC to predict whether the global predictor or the local
predictor is more accurate.

The current branch predictor used by BOOM can be found in src/rv32_boom/brpredictor.scala.
Feel free to modify the code in here, or better yet, make a copy of the file so you can compare your
branch predictor with the default predictor.

Submit the resulting CPI of your predictor on all six benchmarks, a description of its overall
design, and an explanation that summarizes its performance (i.e., when did it do well, when did it
perform poorly, and why? What codes do you expect it to do well on? Etc.).

Also, attach the source code in your report and email your final Chisel code to your TA. The
best team will get an extra 2 points on this lab!

Note: the nice thing about branch predictors is their correctness is only a secondary concern:
their job is to output a single True/False signal, and the pipeline will handle cleaning up the mess!
Corollary: if you see any tests or benchmarks fail, this is a bug in BOOM that is being uncovered

16This hypothetical is in no way auto-biographical.

12

by new instruction interleavings created by your branch predictor. Contact your TA if this occurs
and carry on.

3.3 Branch predictor contest: The C++ Edition!

For this open-ended project, you will design your own branch predictor and test it on some realistic
benchmarks.

Changing the operation of branch prediction in Simics would be arduous, but luckily a com-
pletely separate framework for such an exploration already exists. It was created for a branch
predictor contest run by the MICRO conference and the Journal of Instruction-Level Parallelism.
The contest provided entrants with C++ framework for implementing and testing their submis-
sions, which is what you will use for our in-class study. Information and code can be found at:
http://cava.cs.utsa.edu/camino/cbp2

A description of the available framework can be found at:
http://cava.cs.utsa.edu/camino/cbp2/cbp2-infrastructure-v2/doc/index.html

You can compile and run this framework on essentially any machine with a decently modern
version of gcc/g++. So, while the TA will not be able to help you with setup problems on your
personal machine, you may choose to compile and experiment there to avoid server contention. You
will only have to modify one .h file to complete the assignment! Just follow the directions at the
above link.

Just like the original contest, we will allow your submissions to be in one of two categories (or
both). The categories are realistic predictors (the size of the data structures used by your predictor
are capped) or idealistic predictors (no limits on the resources used by your predictor). Even for
realistic predictors, we are only concerned about the memory used by the simulated branch predictor
structures, not the memory used by the simulator itself. Follow the original contest guidelines.

In the interests of time, you can pick 3-5 benchmarks from the many included with the framework
to test iterations of your predictor design on. If you want to submit to the contest, make sure you
leave at least one benchmark from the whole set that you do not test the predictor on!

A final rule: you can browse textbooks/technical literature for ideas for branch predictor designs,
but don’t get code from the internet.

For the lab report: Submit the source code for your predictor, an overall description of
its functionality, and a summary of its performance on 3-5 of the benchmarks provided with the
framework. Report which benchmarks you tested your predictor out on.

For the contest: We will take the code you submit with the lab, and test its performance on
a set of benchmarks chosen by us. Please email your code in a tar file to the TA.

3.4 Create code that performs no better on an OoO machine

The goal of this open-ended assignment is to purposefully design code which does not perform any
better when run on a superscalar out-of-order processor. Such code will demonstrate poor ILP, as
shown by the measurable CPI. The goal is to have CPIs of the code on the out-of-order processor
be as close as possible to the CPI of the code on the in-order processor.

You should compare the code when run on a 4–width OoO core (i.e. using the
targets/sunfire/bagle-ma-common.simics machine) with the code when run on a single-issue
in-order core (i.e. using the targets/sunfire/bagle-gcache-common.simics machine). How-
ever, make sure the parameters and configuration of the memory hierarchies are identical for both

13

machines!
There is no line limit for the code used in this lab. Your code must run for at least one

million cycles, and it does not have to terminate. Remember to use the full Simics path on
/share/instsww/... when compiling on the target machine.

Submit your source code, an explanation how it operates and how it restricts ILP, and the
record you made of the code’s CPI on the in-order and out-of-order cores.

3.5 Collecting data about the limits of ILP

The goal of this open-ended assignment is to test the limits of ILP achievable for the three bench-
marks included in the lab. As suggested in the directed portion of the lab, there are diminishing
returns provided by increasing the width of the processor and the size of the reorder buffer. Your
job for this project is to determine what these limits are using the same procedures applied in the
directed portion of the lab. Use the OoO Bagle machine with a cache access delay of 1 and memory
access delay of 10. For each benchmark, make a recommendation of processor width and reorder
buffer size, and provide as evidence data which demonstrate that your choice maximizes CPI while
minimizing on-chip overhead.

4 The Third Portion: Feedback

This is a brand new lab, and as such, your TA would like your feedback again! This time though,
I’m requesting answers for both feedback sections! Each section of feedback will be worth one
point a piece (your response to each section should be at least one word. Obviously, the feedback
is more valuable when more words are provided).

4.1 Feedback Part 1

Would you prefer more questions in the vein of Section 2.8 and Section 3.1, in which you analyze
pieces of BOOM via the C++ test harness? Particularly if Simics is removed from the lab?

Feel free to write as little or as much as you want (a point will be taken off only if left completely
empty).

4.2 Feedback Part 2

How many hours did the directed portion take you? How many hours did you spend on the
open-ended portion? Was this lab boring? Did you learn anything? Is there anything you would
change?

Feel free to write as little or as much as you want (a point will be taken off only if left completely
empty).

5 Acknowledgments

The Simics portion of this lab comes from a previous CS 152 lab written by Henry Cook.

14

A Appendix: The Issue Window

Figure 2 shows a single issue slot from the Issue Window.17

Instructions (actually they are “micro-ops” by this stage) are dispatched into the Issue Window.
From here, they wait for all of their operands to be ready (“p” stands for presence bit, which marks
when an operand is present in the register file).

Once ready, the issue slot will assert its “request” signal, and wait to be issued. Currently,
BOOM only issues a single micro-op every cycle, and has a fixed priority encoding to give the lower
ID entries priority.

ready

UOP Code BrMask RS1 p1RDstCtrl...

WD
es
t0

WD
es
t1

=
=

RS2 p2

=
=

(From the register file's two write ports)

Resolve
or Kill

Br
Logic

Val

Issue
Select
Logic

request
issue slot is valid

ready

issue

Issued to the Register Read stage

Control Signals
Physical

Destination
Register

Physical Source
Registers

Figure 2: A single issue slot from the Issue Window.

17Conceptually, a bus is shown for implementing the driving of the signals sent to the Register Read Stage. In
reality, for now anyways, BOOM actually uses muxes.

15

B Appendix: The BOOM Source Code

The BOOM source code can be found in {LAB3ROOT}/src/rv32_boom.
The code structure is shown below:

• rv32_boom/

– consts.scala All constants and adjustable parameters.

– tile.scala The top-level module, instantiates memory and the CPU.

– cpu.scala The top-level of the processor component.

– mem.scala Single-cycle, single-port memory.

– datapath.scala Main chunk of the BOOM datapath and control code.

– brpredictor.scala Branch predictor. Uses a table of n-bit history counters.

– rob.scala Re-order Buffer.

– lsu.scala Load/Store Unit.

– fifo.scala A FIFO queue. Used for the Fetch Buffer.

– htif.scala The Host-Target Interface. Tells the outside world when a program finished

successfully.

– util.scala Utility code.

– oracle*.scala Unused. Holds code for an “oracle” 1-stage processor.

– cpath.scala Unused. All of this code got pushed to dpath.scala (because I’m a horrible

person).

– instructions.scala All RISC-V instruction definitions.

C Appendix: How to Read Chisel Signals in the C++ Test-
Harness Code

In this lab, we will be exercising the C++ tool-flow of Chisel(Chisel can also emit a Verilog
version of a design). Often, whether for debugging purposes or for instrumentation, we will often
want to probe the state of a Chisel design from the C++ test-harness.

As an example, let’s probe the “micro-op opcode” signal (“uop code”) that is stored in the
issue slot of the Issue Window (see Figure 2). If we look through the Chisel code of BOOM, we
see that the IntegerIssueSlot component is what describes the issue slot, and that it contains
the variable slot uopc. The slot uopc signal is a Reg type, or register, and is written to on the
positive-edge of the clock signal when the issue slot’s write-enable signal is asserted.

Each IntegerIssueSlot component is instantiated inside the DatPath component, which itself
is instantiated inside the Cpu component, which in turn is instantiated inside the Tile component.
When Chisel generates the resulting C++ code, the signal slot uopc contains its entire parentage
in its name-mangled C++ name.

C.1 Finding the C++ Variable

The best way to find the C++ variable name for slot uopc is to look through the generated
C++ code in ${LAB3ROOT}/emulator/rv32_boom/generated-src/Tile.h, which holds all Chisel
signals. Grepping for slot uopc we find the variables:

16

dat_t<8> Tile_cpu_d_IntegerIssueSlot_1__slot_uopc;
dat_t<8> Tile_cpu_d_IntegerIssueSlot_1__slot_uopc_shadow;
dat_t<8> Tile_cpu_d_IntegerIssueSlot_1__slot_uopc_shadow_out;
dat_t<8> Tile_cpu_d_IntegerIssueSlot_1__slot_uopc__prev;

dat_t<8> Tile_cpu_d_IntegerIssueSlot__slot_uopc;
dat_t<8> Tile_cpu_d_IntegerIssueSlot__slot_uopc_shadow;
dat_t<8> Tile_cpu_d_IntegerIssueSlot__slot_uopc_shadow_out;
dat_t<8> Tile_cpu_d_IntegerIssueSlot__slot_uopc__prev;

etc....

First, since there are four issue slots in BOOM by default, we will find 4 chunks of “slot uopc”
signals. Chisel will automatically add 1,2,3... to the component’s name when it finds multiple
instantiations of it.

Second, we see the full path name to slot uopc: the top-level module is “Tile”, followed by
“cpu”, “d” (for datapath), and finally “IntegerIssueSlot.”

Third, we see additional versions of the slot uopc variable: a shadow, a shadow out, and a
prev version. You can safely ignore these variables.18

C.2 Reading out the value from the C++ Variable

Although we have now found the variable we are interested in (Tile_cpu_d_IntegerIssueSlot__slot_uopc,
Tile_cpu_d_IntegerIssueSlot_1__slot_uopc, etc.), we can see that it is of type dat_t<8>. This
is a special templated class type that encapsulates all Chisel variables. In this case, it is describing
an 8-bit wide value. The problem is we may occasionally want to describe variables of over 128 bits
in our Chisel design, but natively C and C++ can only handle double the size of the native host
machine’s register. Thus, Chisel uses its own data-type class which maps to an array of uint64 t
variables under the hood.

The important thing to know is that we can use the function .lo word() to pull out the lowest
64-bits from a dat t<> variable.

Tile_t *tile = new Tile_t(); // instantiate our Chisel design
uint64_t slot0_uopc = tile->Tile_cpu_d_IntegerIssueSlot__slot_uopc.lo_word();
uint64_t slot1_uopc = tile->Tile_cpu_d_IntegerIssueSlot_1__slot_uopc.lo_word();
...
etc.

18They exist because slot uopc is a register. For example, on clock lo the shadow version is updated, and on
clock hi the actual slot uopc is updated from the shadow copy.

17

D Appendix: The Load/Store Unit

The Load/Store Unit is responsible for deciding when to fire memory operations to the memory
system. There are three queues: the Load Address Queue (LAQ), the Store Address Queue (SAQ),
and the Store Data Queue (SDQ). Load instructions generate a “uopLD” micro-op. When issued,
“uopLD” calculates the load address and places its result in the LAQ. Store instructions generate
two micro-ops, “uopSTA” (Store Address Generation) and “uopSTD” (Store Data Generation).
The STA micro-op calculates the store address and places its result in the SAQ queue. The STD
micro-op moves the store data from the register file to the SDQ. Each of these micro-ops will issue
out of the Issue Window as soon their operands are ready.

D.1 Store Instructions

Entries in the Store Queue19 are allocated in the Decode stage (the appropriate bit in the stq entry val
vector is set). A “valid” bit denotes when an entry in the SAQ or SDQ holds a valid address or
data (saq val and sdq val respectively). Store instructions are fired to the memory system at
Commit; the ROB notifies the Store Queue when it can fire the next store. By design, stores are
fired to the memory in program order.

D.2 Load Instructions

Entries in the Load Queue (LAQ) are allocated in the Decode stage (laq entry val). In Decode,
each load entry is also given a store mask (laq st mask), which marks which stores in the Store
Queue the given load depends on. When a store is fired to memory and leaves the Store Queue,
the appropriate bit in the store mask is cleared.

Once a load address has been computed and placed in the LAQ, the corresponding valid bit is
set (laq val). Once set, the load instruction will attempt to fire as soon as possible (getting loads
fired early is a huge benefit of out–of–order pipelines). The load instruction compares its address
with all of the store addresses that it depends on. The following scenarios can occur:

1. One of the dependent store addresses is not valid: The load must wait.

2. One of the dependent store addresses matches: The load must wait.

3. All dependent store addresses are valid, do not match: The load can fire.

This is the current BOOM load behavior. However, there are two sub-optimal decisions here:
1) for Situation # 2, loads should pull their data out of the corresponding Store Data Queue entry
(this is what Question 3.1 is about) and 2) for Situation # 1, it can often be advantageous to
speculate that there will be no conflicts between load and store addresses, and handle resetting the
appropriate pipeline state on a mispeculate (“memory dependence speculation”).

References

[1] R. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):24–36, 1999.
[2] K. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, 16(2):28–41, 1996.

19When I refer to the Store Queue, I really mean both the SAQ and SDQ.

18

st_addr_
eq

st_addr_
eq

=
=

=

Data
Mem

addr

wdata
rdata

LAQSAQSDQ
valaddraddrdata valval

=

st_addr_
eq

to RF

st_mask

st_maskld_val

LD/ST
Compare

sta_val

only showing
comparision

logic for one Load

ld_is_rdy ld_is_byp byp_idx

load is
ready to

fire

load can be
bypassed

out of SDQ

location in
SDQ to get
ld data from

4

std_val

4

Figure 3: The Load/Store Unit. Shown is the comparison logic for one load. Notice that each load must
compare itself against all other stores.

19

