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 Problem Q6.1: Implementing Directories      32 POINTS 
 
Ben Bitdiddle is implementing a directory-based cache coherence invalidate protocol for a 64-
processor system.  He first builds a smaller prototype with only 4 processors to test out the cache 
coherence protocol described in Handout #6.  To implement the list of sharers, S, kept by home, 
he maintains a bit vector per cache block to keep track of all the sharers.  The bit vector has one 
bit corresponding to each processor in the system.  The bit is set to one if the processor is 
caching a shared copy of the block, and zero if the processor does not have a copy of the block.  
For example, if Processors 0 and 3 are caching a shared copy of some data, the corresponding bit 
vector would be 1001. 
 
 
Problem Q6.1.A 4 POINTS 

 
The bit vector worked well for the 4-processor prototype, but when building the actual 64-
processor system, Ben discovered that he did not have enough hardware resources.  Assume each 
cache block is 32 bytes.  What is the overhead of maintaining the sharing bit vector for a 4-
processor system, as a fraction of data storage bits?  What is the overhead for a 64-processor 
system, as a fraction of data storage bits? 
 
 
 
Overhead for a 4-processor system: ________________________ 
  
Overhead for a 64-processor system: _______________________ 
 
 



 
Problem Q6.1.B 8 POINTS 

 
Since Ben does not have the resources to keep track of all potential sharers in the 64-processor 
system, he decides to limit S to keep track of only 1 processor using its 6-bit ID as shown in 
Figure Q6.1-A (single-sharer scheme).  When there is a load (ShReq) request to a shared cache 
block, Ben invalidates the existing sharer to make room for the new sharer (home sends an 
InvReq to the existing sharer, the existing sharer sends an InvRep to home, home replaces 
the exiting sharer's ID with the new sharer's ID and sends a ShRep to the new sharer).   
 
                                         

6 
Sharer ID 

 
Figure Q6.1-A 

 
Consider a 64-processor system.  To determine the efficiency of a full bit-vector scheme and 
single-sharer scheme, fill in the number of invalidate-requests that are generated by the 
protocols for each step in the following two sequences of events.  Assume cache block B is 
uncached initially (R(dir) & dir= ε)) for both sequences. 
 
 
Sequence 1 Full bit-vector scheme 

# of invalidate-requests 
single-sharer scheme 

# of invalidate-requests 
Processor #0 reads B 0 0 
Processor #1 reads B   
Processor #0 reads B   
 
 
 
Sequence 2 Full bit-vector scheme 

# of invalidate-requests 
single-sharer scheme 

# of invalidate-requests 
Processor #0 reads B 0 0 
Processor #1 reads B   
Processor #2 writes B   
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Problem Q6.1.C 8 POINTS 

 
Ben thinks that he can improve his original scheme by adding an extra “global bit” to S as 
shown in Figure Q6.1-B (global-bit scheme).  The global bit is set when there is more than 1 
processor sharing the data, and zero otherwise.   
 
                                               

1 6 
0 Sharer ID  

    
     global    

        Figure Q6.1-B 
 
When the global bit is set, home stops keeping track of a specific sharer and assumes that all 
processors are potential sharers.   
 
 

1 6 
1 XXXXXX 

     
              global 
         Figure Q6.1-C 
 
 
Consider a 64-processor system. To determine the efficiency of the global-bit scheme, fill in the 
number of invalidate-requests that are generated for each step in the following two sequences 
of events.  Assume cache block B is uncached initially (i.e., R(dir) & (dir = ε)) for both 
sequences. 
 
 

Sequence 1 global-bit scheme 
# of invalidate-requests 

Processor #0 reads B 0 
Processor #1 reads B  
Processor #0 reads B  

 
 

Sequence 2 global-bit scheme 
# of invalidate-requests 

Processor #0 reads B 0 
Processor #1 reads B  
Processor #2 writes B  
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Problem Q6.1.D 12 POINTS 
 
Ben decides to modify the protocol from Handout #6 for his global-bit scheme (Problem 4.4.C) 
for a 64-processor system.  Your job is to complete the following table (Table Q6.1-1) for him.    
 
Use the same assumptions for the interconnection network, cache states, home directory states, 
and protocol messages as Handout #6.  However, R(dir) (if dir≠ε) now means that there is only 
one processor sharing the cache data (global bit is unset), and R(all) means the global bit is set. 
 
Use k to represent the site that issued the received message.  For Tr(dir) and Tw(id) states, use j 
to represent the site that issued the original protocol request (ShReq/ExReq). 
 

No. Current State Message 
Received Next State Action 

1 R(dir) & (dir = ε) ShReq R({k}) ShRep->k 

2 R(dir) & (dir = ε) ExReq W(k) ExRep->k 

3 R(dir) & (dir ≠ ε) ShReq  
 
 
 

4 R(all) ShReq  
 
 
 

5 R(dir) & (dir ≠ ε) ExReq  
 
 
 

6 R(all) ExReq  
 
 
 

7 W(id)  ShReq Tw(id) WbReq->id 

8 Tr(dir) & (id ∈ dir) InvRep Tr(dir - {id}) nothing 

9 Tr(dir) & (dir = {k}) InvRep W(j) 
 
ExRep->j 
 

10 Tw(id) FlushRep  
 
 
 

Table Q6.1-1: Partial List of Home Directory State Transitions 
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Problem Q6.2: Snoopy Cache Coherent Shared Memory   29 POINTS 
 
This problem improves the snoopy cache coherence protocol presented in Handout #7.  As a 
review of that protocol:  
 

When multiple shared copies of a modified data block exist, one of the caches owns the current copy of the data 
block instead of the memory (the owner has the data block in the OS state).  When another cache tries to 
retrieve the data block from memory, the owner uses cache to cache intervention (CCI) to supply the data 
block.  CCI provides a faster response relative to memory and reduces the memory bandwidth demands.  
However, when multiple shared copies of a clean data block exist, there is no owner and CCI is not used when 
another cache tries to retrieve the data block from memory.   

 
To enable the use of CCI when multiple shared copies of a clean data block exist, we introduce a 
new cache data block state: Clean owned shared (COS).  This state can only be entered from the 
clean exclusive (CE) state.  The state transition from CE to COS is summarized as follows: 

initial state other 
cached 

ops actions by this 
cache 

final 
state 

cleanExclusive (CE) no CR CCI COS 
 
There is no change in cache bus transactions but a slight modification of cache data block states. 
Here is a summary of the possible cache data block states (differences from problem set 
highlighted in bold): 
 
• Invalid (I): Block is not present in the cache. 
• Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.  

This cache is responsible for supplying this data instead of memory when other caches 
request copies of this data.  

• Owned exclusive (OE): The cached data is different from memory, and no other cache has it. 
This cache is responsible for supplying this data instead of memory when other caches 
request copies of this data. 

• Clean shared (CS): The data has not been modified by the corresponding CPU since cached. 
Multiple CS copies and at most one OS copy of the same data could exist. 

• Owned shared (OS): The data is different from memory. Other CS copies of the same data 
could exist. This cache is responsible for supplying this data instead of memory when other 
caches request copies of this data. (Note, this state can only be entered from the OE state.)  

• Clean owned shared (COS): The cached data is consistent with memory. Other CS 
copies of the same data could exist. This cache is responsible for supplying this data 
instead of memory when other caches request copies of this data. (Note, this state can 
only be entered from the CE state.)  
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Problem Q6.2.A 16 POINTS 

 
Fill out the state transition table for the new COS state: 
 

initial state other 
cached 

ops actions by this 
cache 

final 
state 

COS yes none none COS 
  CPU read   
  CPU write   
  replace   
  CR   
  CRI   
  CI   
  WR   
  CWI   

 
 
 
 
Problem Q6.2.B 8 POINTS 

 
The COS protocol is not ideal.  Complete the following table to show an example sequence of 
events in which multiple shared copies of a clean data block (block B) exist, but CCI is not used 
when another cache (cache 4) tries to retrieve the data block from memory. 
 

state for data block B 
cache transaction 

source 
for data cache 1 cache 2 cache 3 cache 4 

0. initial state — I I I I 
1. cache 1 reads data block B memory CE I I I 
2. cache 2 reads data block B CCI  COS CS I I 
3. cache 3 reads data block B CCI COS CS CS I 
4.       
5.      
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Problem Q6.2.C 5 POINTS 
 
As an alternative protocol, we could eliminate the CE state entirely, and transition directly from I 
to COS when the CPU does a read and the data block is not in any other cache.  This modified 
protocol would provide the same CCI benefits as the original COS protocol, but its performance 
would be worse.  Explain the advantage of having the CE state.  You should not need more 
than one sentence. 
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Problem Q6.3: Relaxed Memory Models      18 POINTS 
 
Consider a system which uses Weak Ordering, meaning that a read or a write may complete 
before a read or a write that is earlier in program order if they are to different addresses and there 
are no data dependencies. 
 
Our processor has four fine-grained memory barrier instructions: 

• MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen 
before any read operation initiated after it. 

• MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen 
before any write operation initiated after it. 

• MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be 
seen before any read operation initiated after it. 

• MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be 
seen before any write operation initiated after it. 

 
We will study the interaction between two processes on different processors on such a system: 
 

P1 P2 
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9) 
P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8) 
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8) 

 
We begin with following values in registers and memory (same for both processes): 
 

register/memory Contents 
R2 0 
R3 0 
R4 0 
R5 8 
R8 0x01234568 
R9 0x89abcdec 

M[R8] 6 
M[R9] 7 

 
 
After both processes have executed, is it possible to have the following machine state? Please 
circle the correct answer. If you circle Yes, please provide sequence of instructions that lead to 
the desired result (one sequence is sufficient if several exist). If you circle No, please explain 
which ordering constraint prevents the result.  You will get no credit for circling an answer with 
no explanation.
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Problem Q6.3.A 2 POINTS 
 
memory contents 
M[R8] 7 
M[R9] 6 
 
 
Yes         No 
 
 
 
Problem Q6.3.B 2 POINTS 

 
memory Contents 
M[R8] 6 
M[R9] 7 
 
 
Yes         No 
 
 
 
 
Problem Q6.3.C 2 POINTS 

 
Is it possible for M[R8] to hold 0? 
 
 
Yes         No 
 
 
 
 
 
 



Page 11 of 12 

Now consider the same program, but with two MEMBAR instructions. 
 

P1 P2 
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9) 
P1.2: SW R2, 0(R9)  MEMBARRW  

 MEMBARWR P2.2: SW R5, 0(R8) 
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8) 

 
We want to compare execution of the two programs on our system. 
 
 
Problem Q6.3.D 4 POINTS 

 
If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8? 
 
 
Without MEMBAR instructions?  Yes       No 
 
 
 
 
With MEMBAR instructions?   Yes       No 
 
 
 
 
Problem Q6.3.E 4 POINTS 

 
If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6? 
 
 
Without MEMBAR instructions?  Yes       No 
 
 
 
 
With MEMBAR instructions?   Yes       No 
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Problem Q6.3.F 4 POINTS 

 
Is it possible for both M[R8] and M[R9] to hold 8? 
 
 
Without MEMBAR instructions?  Yes       No 
 
 
 
 
With MEMBAR instructions?   Yes       No 
 
 
 


