
Computer Architecture and Engineering

CS152 Quiz #6
May 8th, 2008

Professor Krste Asanovic

Name:___________________

This is a closed book, closed notes exam.
80 Minutes
 10 Pages

Notes:
• Not all questions are of equal difficulty, so look over the entire exam and

budget your time carefully.
• Please carefully state any assumptions you make.
• Please write your name on every page in the quiz.
• You must not discuss a quiz's contents with students who have not yet

taken the quiz. If you have inadvertently been exposed to the quiz prior to
taking it, you must tell the instructor or TA.

• You will get no credit for selecting multiple choice answers without giving
explanations if the instructions ask you to explain your choice.

Writing name on each sheet ________ 1 Point
 Question 1 _______ 32 Points

 Question 2 _______ 29 Points
 Question 3 _______ 18 Points

 TOTAL ________ 80 Points

 Problem Q6.1: Implementing Directories 32 POINTS

Ben Bitdiddle is implementing a directory-based cache coherence invalidate protocol for a 64-
processor system. He first builds a smaller prototype with only 4 processors to test out the cache
coherence protocol described in Handout #6. To implement the list of sharers, S, kept by home,
he maintains a bit vector per cache block to keep track of all the sharers. The bit vector has one
bit corresponding to each processor in the system. The bit is set to one if the processor is
caching a shared copy of the block, and zero if the processor does not have a copy of the block.
For example, if Processors 0 and 3 are caching a shared copy of some data, the corresponding bit
vector would be 1001.

Problem Q6.1.A 4 POINTS

The bit vector worked well for the 4-processor prototype, but when building the actual 64-
processor system, Ben discovered that he did not have enough hardware resources. Assume each
cache block is 32 bytes. What is the overhead of maintaining the sharing bit vector for a 4-
processor system, as a fraction of data storage bits? What is the overhead for a 64-processor
system, as a fraction of data storage bits?

Overhead for a 4-processor system: ________________________

Overhead for a 64-processor system: _______________________

Problem Q6.1.B 8 POINTS

Since Ben does not have the resources to keep track of all potential sharers in the 64-processor
system, he decides to limit S to keep track of only 1 processor using its 6-bit ID as shown in
Figure Q6.1-A (single-sharer scheme). When there is a load (ShReq) request to a shared cache
block, Ben invalidates the existing sharer to make room for the new sharer (home sends an
InvReq to the existing sharer, the existing sharer sends an InvRep to home, home replaces
the exiting sharer's ID with the new sharer's ID and sends a ShRep to the new sharer).

6
Sharer ID

Figure Q6.1-A

Consider a 64-processor system. To determine the efficiency of a full bit-vector scheme and
single-sharer scheme, fill in the number of invalidate-requests that are generated by the
protocols for each step in the following two sequences of events. Assume cache block B is
uncached initially (R(dir) & dir= ε)) for both sequences.

Sequence 1 Full bit-vector scheme

of invalidate-requests
single-sharer scheme

of invalidate-requests
Processor #0 reads B 0 0
Processor #1 reads B
Processor #0 reads B

Sequence 2 Full bit-vector scheme

of invalidate-requests
single-sharer scheme

of invalidate-requests
Processor #0 reads B 0 0
Processor #1 reads B
Processor #2 writes B

Page 4 of 12

Problem Q6.1.C 8 POINTS

Ben thinks that he can improve his original scheme by adding an extra “global bit” to S as
shown in Figure Q6.1-B (global-bit scheme). The global bit is set when there is more than 1
processor sharing the data, and zero otherwise.

1 6
0 Sharer ID

 global

 Figure Q6.1-B

When the global bit is set, home stops keeping track of a specific sharer and assumes that all
processors are potential sharers.

1 6
1 XXXXXX

 global
 Figure Q6.1-C

Consider a 64-processor system. To determine the efficiency of the global-bit scheme, fill in the
number of invalidate-requests that are generated for each step in the following two sequences
of events. Assume cache block B is uncached initially (i.e., R(dir) & (dir = ε)) for both
sequences.

Sequence 1 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B
Processor #0 reads B

Sequence 2 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B
Processor #2 writes B

Page 5 of 12

Problem Q6.1.D 12 POINTS

Ben decides to modify the protocol from Handout #6 for his global-bit scheme (Problem 4.4.C)
for a 64-processor system. Your job is to complete the following table (Table Q6.1-1) for him.

Use the same assumptions for the interconnection network, cache states, home directory states,
and protocol messages as Handout #6. However, R(dir) (if dir≠ε) now means that there is only
one processor sharing the cache data (global bit is unset), and R(all) means the global bit is set.

Use k to represent the site that issued the received message. For Tr(dir) and Tw(id) states, use j
to represent the site that issued the original protocol request (ShReq/ExReq).

No. Current State Message
Received Next State Action

1 R(dir) & (dir = ε) ShReq R({k}) ShRep->k

2 R(dir) & (dir = ε) ExReq W(k) ExRep->k

3 R(dir) & (dir ≠ ε) ShReq

4 R(all) ShReq

5 R(dir) & (dir ≠ ε) ExReq

6 R(all) ExReq

7 W(id) ShReq Tw(id) WbReq->id

8 Tr(dir) & (id ∈ dir) InvRep Tr(dir - {id}) nothing

9 Tr(dir) & (dir = {k}) InvRep W(j)

ExRep->j

10 Tw(id) FlushRep

Table Q6.1-1: Partial List of Home Directory State Transitions

Page 6 of 12

Problem Q6.2: Snoopy Cache Coherent Shared Memory 29 POINTS

This problem improves the snoopy cache coherence protocol presented in Handout #7. As a
review of that protocol:

When multiple shared copies of a modified data block exist, one of the caches owns the current copy of the data
block instead of the memory (the owner has the data block in the OS state). When another cache tries to
retrieve the data block from memory, the owner uses cache to cache intervention (CCI) to supply the data
block. CCI provides a faster response relative to memory and reduces the memory bandwidth demands.
However, when multiple shared copies of a clean data block exist, there is no owner and CCI is not used when
another cache tries to retrieve the data block from memory.

To enable the use of CCI when multiple shared copies of a clean data block exist, we introduce a
new cache data block state: Clean owned shared (COS). This state can only be entered from the
clean exclusive (CE) state. The state transition from CE to COS is summarized as follows:

initial state other
cached

ops actions by this
cache

final
state

cleanExclusive (CE) no CR CCI COS

There is no change in cache bus transactions but a slight modification of cache data block states.
Here is a summary of the possible cache data block states (differences from problem set
highlighted in bold):

• Invalid (I): Block is not present in the cache.
• Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.

This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

• Owned exclusive (OE): The cached data is different from memory, and no other cache has it.
This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

• Clean shared (CS): The data has not been modified by the corresponding CPU since cached.
Multiple CS copies and at most one OS copy of the same data could exist.

• Owned shared (OS): The data is different from memory. Other CS copies of the same data
could exist. This cache is responsible for supplying this data instead of memory when other
caches request copies of this data. (Note, this state can only be entered from the OE state.)

• Clean owned shared (COS): The cached data is consistent with memory. Other CS
copies of the same data could exist. This cache is responsible for supplying this data
instead of memory when other caches request copies of this data. (Note, this state can
only be entered from the CE state.)

Page 7 of 12

Problem Q6.2.A 16 POINTS

Fill out the state transition table for the new COS state:

initial state other
cached

ops actions by this
cache

final
state

COS yes none none COS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

Problem Q6.2.B 8 POINTS

The COS protocol is not ideal. Complete the following table to show an example sequence of
events in which multiple shared copies of a clean data block (block B) exist, but CCI is not used
when another cache (cache 4) tries to retrieve the data block from memory.

state for data block B
cache transaction

source
for data cache 1 cache 2 cache 3 cache 4

0. initial state — I I I I
1. cache 1 reads data block B memory CE I I I
2. cache 2 reads data block B CCI COS CS I I
3. cache 3 reads data block B CCI COS CS CS I
4.
5.

Page 8 of 12

Problem Q6.2.C 5 POINTS

As an alternative protocol, we could eliminate the CE state entirely, and transition directly from I
to COS when the CPU does a read and the data block is not in any other cache. This modified
protocol would provide the same CCI benefits as the original COS protocol, but its performance
would be worse. Explain the advantage of having the CE state. You should not need more
than one sentence.

Page 9 of 12

Problem Q6.3: Relaxed Memory Models 18 POINTS

Consider a system which uses Weak Ordering, meaning that a read or a write may complete
before a read or a write that is earlier in program order if they are to different addresses and there
are no data dependencies.

Our processor has four fine-grained memory barrier instructions:

• MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen
before any read operation initiated after it.

• MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen
before any write operation initiated after it.

• MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be
seen before any read operation initiated after it.

• MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be
seen before any write operation initiated after it.

We will study the interaction between two processes on different processors on such a system:

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)
P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8)
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We begin with following values in registers and memory (same for both processes):

register/memory Contents
R2 0
R3 0
R4 0
R5 8
R8 0x01234568
R9 0x89abcdec

M[R8] 6
M[R9] 7

After both processes have executed, is it possible to have the following machine state? Please
circle the correct answer. If you circle Yes, please provide sequence of instructions that lead to
the desired result (one sequence is sufficient if several exist). If you circle No, please explain
which ordering constraint prevents the result. You will get no credit for circling an answer with
no explanation.

Page 10 of 12

Problem Q6.3.A 2 POINTS

memory contents
M[R8] 7
M[R9] 6

Yes No

Problem Q6.3.B 2 POINTS

memory Contents
M[R8] 6
M[R9] 7

Yes No

Problem Q6.3.C 2 POINTS

Is it possible for M[R8] to hold 0?

Yes No

Page 11 of 12

Now consider the same program, but with two MEMBAR instructions.

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)
P1.2: SW R2, 0(R9) MEMBARRW

 MEMBARWR P2.2: SW R5, 0(R8)
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We want to compare execution of the two programs on our system.

Problem Q6.3.D 4 POINTS

If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Problem Q6.3.E 4 POINTS

If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Page 12 of 12

Problem Q6.3.F 4 POINTS

Is it possible for both M[R8] and M[R9] to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

