
Computer Architecture and Engineering  

CS152 Quiz #4 
April 10, 2008 

Professor Krste Asanovic 
 

Name:___________________        
 

This is a closed book, closed notes exam. 
80 Minutes 
 10 Pages 

Notes: 
• Not all questions are of equal difficulty, so look over the entire exam 

and budget your time carefully. 
• Please carefully state any assumptions you make. 
• Please write your name on every page in the quiz. 
• You must not discuss a quiz's contents with students who have not 

yet taken the quiz.  If you have inadvertently been exposed to the 
quiz prior to taking it, you must tell the instructor or TA. 

• You will get no credit for selecting multiple choice answers without 
giving explanations if the instructions ask you to explain your choice. 

 

Writing name on each sheet       ________        1 Point 
    Question 1  _______     22 Points 

   Question 2    _______    30 Points 
Question 3      _______    27 Points 

     
TOTAL        ________    80 Points 



Problem Q4.1: Out-of-Order Scheduling   22 points 
 
This problem deals with an out-of-order single-issue processor that is based on the basic 
MIPS pipeline and has a floating-point unit.  The FPU has one adder, one multiplier, and 
one load/store unit.  The adder has a two-cycle latency and is fully pipelined.  The 
multiplier has a ten-cycle latency and is fully pipelined.  Assume that loads and stores 
take one cycle (plus one cycle for write-back for loads). 
 
There are 4 floating-point registers, F0-F3.  These are separate from the integer 
registers.  There is a single write-back port to each register file and also to the ROB.  In 
the case of a write-back conflict, the older instruction writes back first.  Floating-point 
instructions (including loads writing floating-point registers) must spend one cycle in the 
write-back stage before their result can be used.  Integer results are available for bypass 
the next cycle after issue. 
 
To maximize number of instructions that can be in the pipeline, register renaming is used.  
The decode stage can add up to one instruction per cycle to the re-order buffer (ROB).   
 
The instructions are committed in order and only one instruction may be committed per 
cycle.  The earliest time an instruction can be committed is one cycle after write back. 
 
For the following questions, we will evaluate the performance of the code segment in 
Figure Q4.1-A.  
 

I1  L.D F1, 5(R2) 
I2  MUL.D F2, F1, F0 
I3  ADD.D F3, F2, F0 
I4  ADDI R2, R2, 8 
I5  L.D F1, 5(R2) 
I6  MUL.D F2, F1, F1 
I7  ADD.D F2, F2, F3 

Figure Q4.1-A 
 
 



 
Problem Q4.1.A 11 POINTS 

 
For this question, we will consider an ideal case where we have unlimited hardware 
resources for renaming registers.  Assume that you have an infinite ROB. 
 
Your job is to complete Table Q4.1-1.  Fill in the cycle numbers for when each 
instruction enters the ROB, issues, writes back, and commits.  Also fill in the new 
register names for each instruction, where applicable.  Since we have an infinite supply of 
register names, you should use a new register name each time a register is written (T0, 
T1, T2, … etc).  Keep in mind that after a register has been renamed, subsequent 
instructions that refer to that register need to refer instead to the new register name. 
 

Time  
Decode 
  ROB 

Issued WB Committed OP Dest Src1 Src2 

I1 -1 0 1 2 L.D T0 R2 - 
I2 0 2 12 13 MUL.D T1 T0 F0 
I3 1    ADD.D    
I4     ADDI   - 
I5     L.D   - 
I6     MUL.D    
I7     ADD.D    

Table Q4.1-1 
 
 
Problem Q4.1.B 11 POINTS 

 
For this question, assume that you have a two-entry ROB (i.e. only T0 and T1 tags can 
be used).  A ROB entry can be reused one cycle after the instruction using it commits.   
 
Your job is to complete Table Q4.1-2.  Fill in the cycle numbers for when each 
instruction enters the ROB, issues, writes back, and commits.  Also fill in the new 
register names for each instruction, where applicable.   
 

Time  
Decode 
  ROB 

Issued WB Committed OP Dest Src1 Src2 

I1 -1 0 1 2 L.D T0 R2 - 
I2 0 2 12 13 MUL.D T1 T0 F0 
I3 3    ADD.D    
I4     ADDI   - 
I5     L.D   - 
I6     MUL.D    
I7     ADD.D    

Table Q4.1-2 



 Problem Q4.2: Fetch Pipelines       30 points 
 
Ben is designing a deeply-pipelined single-issue in-order MIPS processor.  The first half 
of his pipeline is as follows: 
 

PC PC Generation 
F1 
F2 ICache Access 

D1 
D2 Instruction Decode 

RN Instruction Dispatch 
RF Register File Read 
EX Integer Execute 

 
There are no branch delay slots and currently there is no branch prediction hardware 
(instructions are fetched sequentially unless the PC is redirected by a later pipeline stage).  
Subroutine calls use JAL/JALR (jump and link).  These instructions write the return 
address (PC+4) into the link register (r31).  Subroutine returns use JR r31.  Assume 
that PC Generation takes a whole cycle and that you cannot bypass anything into the end 
of the PC Generation phase. 

 
Problem Q4.2.A  6 POINTS - Pipelining Subroutine Returns 

 
Immediately after what pipeline stage does the processor know that it is executing a 
subroutine return instruction?   
 
 
 
 
 
Immediately after what pipeline stage does the processor know the subroutine return 
address?   
 
 
 
 
 
 
How many pipeline bubbles are required when executing a subroutine return?  
 
 
 
 
 



Problem Q4.2.B 4 POINTS  -  Adding a BTB 
 
Louis Reasoner suggests adding a Branch Target Buffer (BTB) to speed up subroutine 
returns.  A BTB entry stores the last target address of the instruction at a given PC.  Why 
doesn’t a standard BTB work well for predicting subroutine returns? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem Q4.2.C 5 POINTS  -  Adding a Return Stack 

 
Instead of a BTB, Ben decides to add a return stack to his processor pipeline.  This return 
stack records the return addresses of the N most recent subroutine calls.  This return stack 
takes no time to access (it is always presenting a return address). Return addresses are 
pushed onto the stack at the end of the decode stage if the instruction is a call 
(JAL/JALR). 
 
Explain how this return stack can speed up subroutine returns.  Describe for which 
instructions and in which pipeline stages return addresses are popped off the stack. 
 
 
 
 
 
 
 
 
c 
 
 
 
 
 
 



Problem Q4.2.D 5 POINTS   -   Return Stack Operation 
 
Fill in the pipeline diagram below corresponding to the execution of the following code 
on the return stack machine: 
 
A: JAL B 
A+1: 
A+2: 
… 
 
B: JR r31 
B+1: 
B+2: 
… 
 
Make sure to indicate the instruction that is being executed.  The first two instructions are 
illustrated below.  The crossed out stages indicate that the instruction was killed during 
those cycles. 
 
instruction    time→             

A PC F1 F2 D1 D2 RN RF EX           
A+1  PC F1 F2 D1 D2 RN RF EX          

                   
                   
                   
                   
                   
                   
                   
                   
                   
                   

 



 
Problem Q4.2.E  4 POINTS - Handling Return Address Mispredicts 

 
If the return address prediction is wrong, how is this detected? How does the processor 
recover, and how many cycles are lost (relative to a correct prediction)?   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem Q4.2.F 6 POINTS - Further Improving Performance 

 
Describe a hardware structure that Ben could add, in addition to the return stack, to 
improve the performance of return instructions so that there is usually only a one-cycle 
pipeline bubble when executing subroutine returns (assume that the structure takes a full 
cycle to access). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Problem Q4.4: Bounds on ILP        27 points 
 
Consider a superscalar machine with a unified physical register file, i.e., the reorder 
buffer (ROB) stores only tags not data values. The ROB has infinite entries, and there are 
an infinite number of tags available for use in renaming. 
 
 The machine fetches, decodes, issues and commits instructions in-order, but allows 
instructions to proceed through the functional units out of order. Different functional 
units have different latencies as described below.  The processor may fetch, decode, 
issue, or commit up to four instructions on any given cycle. 
 
The pipeline of the machine is illustrated below.  The machine has fetch (F), decode (D) 
and issue (IS) units.  The functional units are: a single-cycle latency integer ALU (I), a 
fully-pipelined two-cycle memory access unit (M) to a perfect memory, and a fully-
pipelined four-cycle FPU (F).   During the writeback stage (W) the busy bits of 
instructions in the ROB are updated, allowing instructions whose sources are ready to 
begin execution on the next cycle.  Instructions must commit (C) in order. 
 
During the issue stage an instruction is allocated a new physical register for its result, and 
its source registers are translated into physical registers using the rename table.  Physical 
registers are freed when a later write to the same architectural register commits.  The 
freed physical register can be used by the decode stage in the next cycle following the 
commit. 

 F 
F 
F 
F 

D 
D 
D 
D 

Is 
Is 
Is 
Is 

I 

M 

M 

M 

M 

F
P 

F
P 

F
P 

F
P F

P 
F
P 

F
P 

F
P 

W
B W
B W

B W
B W

B W
B 

C 
C 
C 
C 

I 



 
 
Problem Q4.4.A 7 POINTS - Maximum ILP 

 
What is the minimum number of registers required for the machine’s pipelines to be 
capable of becoming completely saturated on some code sequence?  ‘Saturated’ means 
that it would be impossible to sustain a higher throughput. Explain. 
 
 
 
 
 
 
 
 
 
 
 
 
Problem Q4.4.B 4 POINTS - Maximum ILP with no FPU 

 
Does the answer to Q4.4A change if we remove the floating-point unit from the machine?  
Explain why the minimum does or does not change. 
 



 
Problem Q4.4.C   8 POINTS  -   Minimum Registers 

 
Does there exist a minimum number of physical registers that would prevent the 
registers from ever becoming a performance bottleneck, for any piece of code. If so, give 
the number of physical registers and explain.  If not, explain why the number required is 
not bounded. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Problem Q4.4.D  8 POINTS   -   ROB size 

 
Would there be any purpose to having more reorder buffer entries than the difference 
between the number of physical registers and the number of architectural registers? 
Explain. 


