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CS152 Spring 2008 Quiz 2 Answer Key 

 
Problem Q2.1: Victim Cache Evaluation 

 
Problem Q2.1.A Baseline Cache Design 

 

 

Component Delay equation (ps)  FA (ps) 

Comparator 200!(# of tag bits) + 1000 6800 

N-to-1 MUX 500!log2 N + 1000 1500 

Buffer driver 2000 2000 

AND gate 1000 1000 

OR gate 500 500 

Data output driver 500!(associativity) + 1000 3000 

Valid output 

driver 

1000 1000 

Table Q2.1-1 

 

The Input Address has 32 bits. The bottom two bits are discarded (cache is word-addressable) 

and bit 2 is used to select a word in the cache line. Thus the Tag has 29 bits. The Tag+Status 

line in the cache is 31 bits. 

 

The MUXes are 2-to-1, thus N is 2. The associativity of the Data Output Driver is 4 – there are 

four drivers driving each line on the common Data Bus. 

 

Delay to the Valid Bit is equal to the delay through the Comperator, AND gate, OR gate, and 

Valid Output Driver. Thus it is 6800 + 1000 + 500 + 1000 = 9300 ps. 

 

Delay to the Data Bus is delay through MAX ((Comperator, AND gate, Buffer Driver), 

(MUX)), Data Output Drivers. Thus it is MAX (6800 + 1000 + 2000, 1500) + 3000 = MAX 

(9800, 1500) + 3000 = 9800 + 3000 = 12800 ps. 

 

Critical Path Cache Delay:  12800 ps 
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Problem Q2.1.B Victim Cache Behavior 

 

 

Main Cache Victim Cache 

L0 L1 L2 L3 L4 L5 L6 L7 Hit? Way0 Way1 Hit? 

 

Input 

Address inv inv inv inv inv inv inv inv - inv inv - 

00 0        N   N 

80 8        N 0  N 

04 0        N 8  Y 

A0   A      N   N 

10  1       N   N 

C0     C    N   N 

18         Y   N 

20   2      N  A N 

8C 8        N 0  Y 

28         Y   N 

AC   A      N  2 Y 

38    3     N   N 

C4         Y   N 

3C         Y   N 

48     4    N C  N 

0C 0        N  8 N 

24   2      N A  N 

Table Q2.1-2
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Problem Q2.1.C Average Memory Access Time 

 

 

15% of accesses will take 50 cycles less to complete, so the average memory access 

improvement is 0.15 * 50 = 7.5 cycles. 
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Problem Q2.2: Code and Data Rearrangement 

 
for(j=0; j < N; j++) {   

    for(i=0; i < M; i++) {   

       x[i][j] = 2 * x[i][j];   

    }   

 }   

 
for(i=0; i < M; i++) {   

    for(j=0; j < N; j++) {   

       x[i][j] = 2 * x[i][j];   

    }   

 }   

 

 

 
for(i=0; i < N; i++)  

    a[i] = b[i] * c[i];  

for(i=0; i < N; i++)  

     d[i] = a[i] * c[i]; 

 

for(i=0; i < N; i++)  

{  

       a[i] = b[i] * c[i];  

       d[i] = a[i] * c[i];  

  }  
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Problem Q2.3:  Caches and Memory Access Patterns 

 

You have just accepted a position at Caches-R-Us as a research scientist.  Your first task  

is to assess the pathological performance of various cache organizations.  You decide to  

start by looking at two basic caches, both with a capacity of four words.  The first is a  

direct-mapped cache with one word per cache line.  The second is a fully-associative  

cache also with one word per cache line and an LRU replacement policy.  For both of the  

following questions assume the caches are initially empty, i.e., all lines are invalid.  

Problem Q2.3.A  

Please specify a memory access pattern that will cause the fully-associative cache to  

incur fewer misses than the direct-mapped cache.  

  

There are many simple memory access patterns that could cause conflict misses in the  

direct-mapped cache that would result in better performance from the fully-associative  

cache.  An example would be an access pattern that had a stride of 4 and a range of 16.   

In this case, we would have an access pattern of 0, 4, 8, 16, 0, 4, 8, 16, etc. All the  

accesses would be mapped to the same cache line for the direct-mapped cache, resulting  

in a 100% miss rate.  The fully-associative cache, on the other hand, would contain all  

four data words and have a 0% miss rate after a round of cold-start misses.  

  

  

  

  

  

  

Problem Q2.3.B  

Does there exist a memory access pattern that causes the direct-mapped cache to incur  

fewer misses than the fully-associative cache?  If so, please give one such access pattern,  

or else explain why this is not possible.  

  

Yes, there do exist memory access patterns that result in better performance from a  

direct-mapped cache.  Although they are not common occurrences, we can construct a  

pathological memory access pattern that causes the fully-associative cache to kick out  

data that will be reused (because of the LRU replacement policy) but maps to different  

locations in the direct-mapped cache.  An example is a simple loop that accesses 5  

sequential memory words, such as 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, etc.  In this case, the direct-  

mapped cache would miss on every access to words 0 and 4 but hit on words 1,2, and 3  

after a round of cold start misses, resulting in a 40% miss rate.  For the fully-associative  

cache, the LRU policy would cause the cache to kick out a cache line (since we are  

accessing more data words than the cache capacity) right before it will be used in the next  

access, resulting in a 100% miss rate. 
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Problem Q2.4: Cache Parameters Short Answer 

 

Problem Q2.4.A  

 

TRUE. Since cache size is unchanged, the line size doubles, the number of tag entries is 

halved. 

 

 

Problem Q2.4.B  

 

FALSE. The total number of lines across all sets is still the same, therefore the number of 

tags in the cache remain the same.  

 

 

Problem Q2.4.C  

 

TRUE. Doubling the capacity increases the number of lines from N to 2N. Address i and 

address i+N now map to different entries in the cache and hence, conflicts are reduced. 

 

 

Problem Q2.4.D  

 

FALSE. The number of lines doubles but the line size remains the same. So the 

compulsory “cold-start” misses stays the same.  

 

 

Problem Q2.4.E  

 

TRUE. Doubling the line size causes more data to be pulled into the cache on a miss. 

This exploits spatial locality as subsequent loads to different words in the same cache 

line will hit in the cache reducing compulsory misses. 

 


