

CS152 Quiz 1 Answer Guide
Distributed 2/25/2008

Problem Q.1: Microprogramming Bus-Based Architectures

[28 points]

In this problem, we explore microprogramming by writing microcode for the bus-based
implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS
Implementation), which we have included at the end of this quiz for your reference. In
order to further simplify this problem, ignore the busy signal, and assume that the
memory is as fast as the register file. The final solution should be elegant and efficient.

You are to implement in microcode a double indirect addressing mode, as described
below. In this addressing mode, the source register contains a pointer to a location in
memory whose value is a pointer to the location in memory whose value is to be loaded.
The instruction has the following format:

LWmm rd, rs
LWmm performs the following operation:

rd ← M[M[rs]]

Fill in Worksheet Q1-1 with the microcode for LWmm. Use don’t cares (*) for fields
where it is safe to use don’t cares. Study the hardware description well, and make sure
all your microinstructions are legal.
Please comment your code clearly. If the pseudo-code for a line does not fit in the space
provided, or if you have additional comments, you may write in the margins as long as
you do it neatly. Your code should exhibit “clean” behavior and not modify any registers
(except rd) in the course of executing the instruction.
Finally, make sure that the instruction fetches the next instruction (i.e., by doing a
microbranch to FETCH0 as discussed in the Handout).

State PseudoCode ld

IR
Reg
Sel

Reg
W

en
Reg

ld
A

ld
B

ALUOp en
ALU

ld
MA

Mem
W

en
Mem

Ex
Sel

en
Imm

µB
r

Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

LWMM0: MA <- R[rs] * rs 0 1 * * * 0 1 * 0 * 0 N *

 MA <- Mem * * * 0 * * * 0 1 0 1 * 0 N *

 R[rd] <- Mem;
ubranch back to
fetch

* rd 1 1 * * * 0 * 0 1 * 0 J FETCH0

Worksheet Q1-1

Problem Q2: Dual ALU Pipeline [33 points]

Problem Q2.A ALU Usage

 ALU1 or ALU2?
add r1, r2, r3 ALU1
lw r4, 0(r1)
add r5, r4, r6 ALU2
add r7, r5, r8 ALU2
add r1, r2, r3 ALU1
lw r4, 0(r1)
add r5, r1, r6 ALU1

The following timeline diagrams the execution of the instructions, with the stage where
each instruction produces its result highlighted in bold, and the bypassing between
instructions shown by arrows.

add1 IF ID EX1 EX2 WB
lw1 IF ID EX1 MEM WB
add2 IF ID EX1 EX2 WB
add3 IF ID EX1 EX2 WB
add4 IF ID EX1 EX2 WB
lw2 IF ID EX1 MEM WB
add5 IF ID EX1 EX2 WB

The pipeline is initially idle, so the first add reads its operands from the register file in
ID and uses ALU1. The second add uses the result of the lw which is not available by the
end of ID; therefore the add uses ALU2, and the load data is bypassed to it at the end of
EX1. The third add uses the result of the second, so its data is not available by the end of
ID; it also uses ALU2, allowing the data to be bypassed to it at the end of EX1. The
fourth add has no dependencies on the previous instructions; it reads its operands from
the register file in ID and uses ALU1. The fifth add uses the result of the fourth add.
This value is bypassed to it at the end of ID from EX2/MEM, and it uses ALU1.

Problem Q2.B Instruction Sequences Causing Stalls

Note that the base address operand for both LW and SW must be available by the end of
ID, but the data operand for SW must only be available by the end of EX1.

 stall?
(yes/no) explanation

add r1, r2, r3
lw r4, 0(r1) No

The add (in EX1) uses ALU1 and bypasses
its result to the LW (in ID).

lw r1, 0(r2)
add r3, r1, r4
lw r5, 0(r1)

No
The first LW (in EX2/MEM) bypasses its
result to the add (in EX1) which will use
ALU2, and also to the second LW (in ID).

lw r1, 0(r2)
lw r3, 0(r1) Yes

The result of the first LW (in EX1) is not
available in time for the second LW (in
ID), so the second LW must stall.

lw r1, 0(r2)
sw r1, 0(r3) No

The LW (in EX2/MEM) bypasses its result
to the SW (in EX1) in time for it to store
the data in EX2/MEM.

lw r1, 0(r2)
add r3, r1, r4
sw r5, 0(r3) Yes

The LW (in EX2/MEM) bypasses its result
to the add (in EX1) which will use ALU2.
But, the result of the add (in EX1) is not
available in time for the SW (in ID), so the
SW must stall.

lw r1, 0(r2)
add r3, r1, r4 No

The LW (in EX2/MEM) bypasses its result
to the add (in EX1) which will use ALU2.

Problem Q3: Processor Design (Short Yes/No Questions)
 [10 points]

The following questions describe two variants of a processor which are otherwise
identical. In each case, circle "Yes" if the variants might generate different results from
the same compiled program, and circle "No" otherwise. You must also briefly explain
your reasoning. Ignore differences in the time each machine takes to execute the
program.

Problem Q3.A Interlock vs. Bypassing

No. Data dependencies are preserved with either interlocks or bypassing, so the
processors always generate the same results. Bypassing improves performance by
eliminating stalls.

Problem Q3.B Delay Slot

Yes. The instruction following a taken branch is executed on processor A, but killed on
processor B; so, the processors can generate different results.

Problem Q3.C Structural Hazard

No. Both processors retrieve the same data values. There is only a performance
difference because processor A must stall an instruction fetch to allow a load instruction
to access memory.

Problem Q3.D Microcode size

No. A wide variety of possible microded machines can implement the same user-level
ISA semantics and generate the same results for all programs.

Problem Q3.E Register Size

Either answer, depending on assumptions about microcode & ISA changes.
No: With appropriate microcode, both machines could generate identical results for a 32-
bit ISA. Also, machine A could implement a 64-bit ISA using two 32-bit registers for
each 64-bit value and carefully handling overflow conditions.
Yes: Assuming microcode was literally unchanged, the machines would generate
different results due to the different overflow properties of 32-bit and 64-bit registers.
For example, if a value is shifted left, bits are lost using 32-bit registers that are retained
with 64-bit registers.

Problem Q.4: Iron Law of Processor Performance (Short Answer) [8 points]

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will
have no effect. Explain your reasoning to receive credit.

 Instructions / Program Cycles / Instruction Seconds / Cycle Reasoning?

Combining two
pipeline stages

No effect.
No change is made to the ISA,
so the program remains the
same.

Decrease.
Fewer possible pipeline
hazards between
instructions.

May increase.
If combined stage makes
critical path longer, cycle
time may have to
increase.

Removing a
complex instruction

May increase.
If program used this instruction,
the compiler will have to
replace it with several simple
ones

May decrease.
If complex instruction
took more cycles than
the others, overall CPI
will decrease

May decrease.
Complicated hardware
may be removed as well

Running the
machine at a higher
clock frequency

No effect.
ISA is unchanged

No effect.
Pipeline is unchanged

Decrease.
Clock frequency increase
means each cycle takes
fewer seconds

Using a better
compiler

Usually decrease as
improved compiler will
generate more concise code, but
could increase if more, simpler
instructions reduced hazards

May decrease as better
compiler scheduling
can avoid hazards from
load-use delay slots,
and branch delay slots.

No effect.
Underlying hardware is
unchanged.

