
CS152
Computer Architecture and Engineering

Caches and the Memory Hierarchy

February 18, 2010

Assigned February 18 Problem Set #2 Due March 4

http://inst.eecs.berkeley.edu/~cs152/sp10

The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and office
hours to understand the problems. However, each student must turn in his own solution to
the problems.
The problem sets also provide essential background material for the quizzes. The
problem sets will be graded primarily on an effort basis, but if you do not work through
the problem sets you are unlikely to succeed at the quizzes! We will distribute solutions
to the problem sets on the day the problem sets are due to give you feedback. Homework
assignments are due at the beginning of class on the due date. Late homework will not be
accepted.

Problem 2.1: Cache Access-Time & Performance

This problem requires the knowledge of Handout #2 (Cache Implementations) and
Lectures 6 & 7. Please, read these materials before answering the following questions.

Ben is trying to determine the best cache configuration for a new processor. He knows
how to build two kinds of caches: direct-mapped caches and 4-way set-associative
caches. The goal is to find the better cache configuration with the given building blocks.
He wants to know how these two different configurations affect the clock speed and the
cache miss-rate, and choose the one that provides better performance in terms of average
latency for a load.

Problem 2.1.A Access Time: Direct-Mapped

Now we want to compute the access time of a direct-mapped cache. We use the
implementation shown in Figure H2-A in Handout #2. Assume a 128-KB cache with 8-
word (32-byte) cache lines. The address is 32 bits and byte-addressed, so the two least
significant bits of the address are ignored since a cache access is word-aligned. The data
output is also 32 bits (1 word), and the MUX selects one word out of the eight words in a
cache line. Using the delay equations given in Table 2.1-1, fill in the column for the
direct-mapped (DM) cache in the table. In the equation for the data output driver,
‘associativity’ refers to the associativity of the cache (1 for direct-mapped caches, A for
A-way set-associative caches).

Component Delay equation (ps) DM (ps) SA (ps)
Tag Decoder 200×(# of index bits) + 1000
Data
Tag Memory array 200×log2 (# of rows) +

200×log2 (# of bits in a row) + 1000 Data
Comparator 200×(# of tag bits) + 1000
N-to-1 MUX 500×log2 N + 1000
Buffer driver 2000
Data output driver 500×(associativity) + 1000
Valid output
driver

1000

Table 2.1-1: Delay of each Cache Component

What is the critical path of this direct-mapped cache for a cache read? What is the
access time of the cache (the delay of the critical path)? To compute the access time,
assume that a 2-input gate (AND, OR) delay is 500 ps. If the CPU clock is 150 MHz,
how many CPU cycles does a cache access take?

Problem 2.1.B Access Time: Set-Associative

We also want to investigate the access time of a set-associative cache using the 4-way
set-associative cache in Figure H2-B in Handout #2. Assume the total cache size is still
128-KB (each way is 32-KB), a 4-input gate delay is 1000 ps, and all other parameters
(such as the input address, cache line, etc.) are the same as part 2.1.A. Compute the
delay of each component, and fill in the column for a 4-way set-associative cache in
Table 2.1-1.

What is the critical path of the 4-way set-associative cache? What is the access time
of the cache (the delay of the critical path)? What is the main reason that the 4-way
set-associative cache is slower than the direct-mapped cache? If the CPU clock is
150 MHz, how many CPU cycles does a cache access take?

Problem 2.1.C Miss-rate analysis

Now Ben is studying the effect of set-associativity on the cache performance. Since he
now knows the access time of each configuration, he wants to know the miss-rate of each
one. For the miss-rate analysis, Ben is considering two small caches: a direct-mapped
cache with 8 lines with 16 bytes/line, and a 4-way set-associative cache of the same size.
For the set-associative cache, Ben tries out two replacement policies – least recently used
(LRU) and round robin (FIFO).

Ben tests the cache by accessing the following sequence of hexadecimal byte addresses,
starting with empty caches. For simplicity, assume that the addresses are only 12 bits.
Complete the following tables for the direct-mapped cache and both types of 4-way set-
associative caches showing the progression of cache contents as accesses occur (in the
tables, ‘inv’ = invalid, and the column of a particular cache line contains the {tag,index}
contents of that line). You only need to fill in elements in the table when a value changes.

line in cache hit?

D-map

Address L0 L1 L2 L3 L4 L5 L6 L7
110 inv 11 inv inv inv inv inv inv no
136 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 D-map
Total Misses
Total Accesses

LRU

line in cache
Set 0 Set 1

hit?
4-way

Address

way0 way1 Way2 way3 way0 way1 way2 way3
110 inv Inv Inv inv 11 inv inv inv no
136 11 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 4-way LRU
Total Misses
Total Accesses

FIFO
line in cache

Set 0 Set 1
hit?

4-way

Address

way0 way1 way2 way3 way0 way1 way2 way3
110 inv Inv Inv inv 11 inv inv inv no
136 13 no
202 20 no
1A3
102
361
204
114
1A4
177
301
206
135

 4-way FIFO
Total Misses
Total Accesses

Problem 2.1.D Average Latency

Assume that the results of the above analysis can represent the average miss-rates of the
direct-mapped and the 4-way LRU 128-KB caches studied in 2.1.A and 2.1.B. What
would be the average memory access latency in CPU cycles for each cache (assume that
the cache miss penalty is 20 cycles)? Which one is better? For the different replacement
policies for the set-associative cache, which one has a smaller cache miss rate for the
address stream in 2.1.C? Explain why. Is that replacement policy always going to yield
better miss rates? If not, give a counter example using an address stream.

Problem 2.2: Pipelined Cache Access

This problem requires the knowledge of Lecture 7 and 8. Please, read these materials
before answering the following questions. You may also want to take a look at pipeline
lectures (Lecture 4 and 5) if you do not feel comfortable with the topic.

Problem 2.2.A

Ben Bitdiddle is designing a five-stage pipelined MIPS processor with separate 32 KB
direct-mapped primary instruction and data caches. He runs simulations on his
preliminary design, and he discovers that a cache access is on the critical path in his
machine. After remembering that pipelining his processor helped to improve the
machine’s performance, he decides to try applying the same idea to caches. Ben breaks
each cache access into three stages in order to reduce his cycle time. In the first stage the
address is decoded. In the second stage the tag and data memory arrays are accessed; for
cache reads, the data is available by the end of this stage. However, the tag still has to be
checked—this is done in the third stage.

After pipelining the instruction and data caches, Ben’s datapath design looks as follows:

I-Cache
Address
Decode

I-Cache
Array
Access

I-Cache
Tag

Check

Instruction
Decode &
Register

Fetch

Execute

D-
Cache

Address
Decode

D-
Cache
Array
Access

D-
Cache
Tag

Check

Write-
back

Alyssa P. Hacker examines Ben’s design and points out that the third and fourth stages
can be combined, so that the instruction cache tag check occurs in parallel with
instruction decoding and register file read access. If Ben implements her suggestion,
what must the processor do in the event of an instruction cache tag mismatch? Can
Ben do the same thing with load instructions by combining the data cache tag check
stage with the write-back stage? Why or why not?

Problem 2.2.B

Alyssa also notes that Ben’s current design is flawed, as using three stages for a data
cache access won’t allow writes to memory to be handled correctly. She argues that Ben
either needs to add a fourth stage or figure out another way to handle writes. What
problem would be encountered on a data write? What can Ben do to keep a three-
stage pipeline for the data cache?

Problem 2.2.C

With help from Alyssa, Ben streamlines his design to consist of eight stages (the handling
of data writes is not shown):

I-Cache
Address
Decode

I-Cache
Array

Access

I-Cache Tag
Check,

Instruction
Decode &
Register

Fetch

Execute
D-Cache
Address
Decode

D-Cache
Array

Access

D-Cache
Tag Check Write-Back

Both the instruction and data caches are still direct-mapped. Would this scheme still
work with a set-associative instruction cache? Why or why not? Would it work
with a set-associative data cache? Why or why not?

Problem 2.2.D

After running additional simulations, Ben realizes that pipelining the caches was not
entirely beneficial, as now the cache access latency has increased. If conditional branch
instructions resolve in the Execute stage, how many cycles is the processor’s branch
delay?

Problem 2.2.E

Assume that Ben’s datapath is fully-bypassed. When a load is executed, the data
becomes available at the end of the D-cache Array Access stage. However, the tag has
not yet been checked, so it is unknown whether the data is correct. If the load data is
bypassed immediately, before the tag check occurs, then the instruction that depends on
the load may execute with incorrect data. How can an interlock in the Instruction
Decode stage solve this problem? How many cycles is the load delay using this
scheme (assuming a cache hit)?

Problem 2.2.F

Alyssa proposes an alternative to using an interlock. She tells Ben to allow the load data
to be bypassed from the end of the D-Cache Array Access stage, so that the dependent
instruction can execute while the tag check is being performed. If there is a tag
mismatch, the processor will wait for the correct data to be brought into the cache; then it
will re-execute the load and all of the instructions behind it in the pipeline before
continuing with the rest of the program. What processor state needs to be saved in
order to implement this scheme? What additional steps need to be taken in the
pipeline? Assume that a DataReady signal is available and isasserted when the load
data is available in the cache, and is set to 0 when the processor restarts its
execution (you don’t have to worry about the control logic details of this signal).
How many cycles is the load delay using this scheme (assuming a cache hit)?

Problem 2.3: Loop Ordering

This problem requires knowledge of Lecture 8. Please, read it before answering the
following questions.

This problem evaluates the cache performances for different loop orderings. You are
asked to consider the following two loops, written in C, which calculate the sum of the
entries in a 128 by 64 matrix of 32-bit integers:

Loop A Loop B
sum = 0;
for (i = 0; i < 128; i++)
 for (j = 0; j < 64; j++)
 sum += A[i][j];

sum = 0;
for (j = 0; j < 64; j++)
 for (i = 0; i < 128; i++)
 sum += A[i][j];

The matrix A is stored contiguously in memory in row-major order. Row major order
means that elements in the same row of the matrix are adjacent in memory as shown in
the following memory layout:

A[i][j] resides in memory location [4*(64*i + j)]

Memory Location:

0 4 252 256 4*(64*127+63)

A[0][0] A[0][1] ... A[0][63] A[1][0] ... A[127][63]

For Problem 2.3.A to Problem 2.3.C, assume that the caches are initially empty. Also,
assume that only accesses to matrix A cause memory references and all other necessary
variables are stored in registers. Instructions are in a separate instruction cache.

Problem 2.3.A

Consider a 4KB direct-mapped data cache with 8-word (32-byte) cache lines.
Calculate the number of cache misses that will occur when running Loop A.
Calculate the number of cache misses that will occur when running Loop B.

The number of cache misses for Loop A:_____________________________

The number of cache misses for Loop B:_____________________________

Problem 2.3.B

Consider a direct-mapped data cache with 8-word (32-byte) cache lines. Calculate the
minimum number of cache lines required for the data cache if Loop A is to run without
any cache misses other than compulsory misses. Calculate the minimum number of
cache lines required for the data cache if Loop B is to run without any cache misses other
than compulsory misses.

Data-cache size required for Loop A: ____________________________ cache line(s)

Data-cache size required for Loop B: ____________________________ cache line(s)

Problem 2.3.C

Consider a 4KB fully-associative data cache with 8-word (32-byte) cache lines. This data
cache uses a first-in/first-out (FIFO) replacement policy.
Calculate the number of cache misses that will occur when running Loop A.
Calculate the number of cache misses that will occur when running Loop B.

The number of cache misses for Loop A:_____________________________

The number of cache misses for Loop B:_____________________________

Problem 2.4: Three C’s of Cache Misses

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will
have no effect. You can assume the baseline cache is set associative. Explain your reasoning.

 Compulsory Misses Conflict Misses Capacity Misses

Double the associativity
(capacity and line size constant)

Halving the line size
(associativity and
sets constant)

Doubling the number of sets
(capacity and line size constant)

 Compulsory Misses Conflict Misses Capacity Misses

Adding prefetching

