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The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office 
hours to understand the problems. However, each student must turn in his own solution to 
the problems. 
The problem sets also provide essential background material for the quizzes. The 
problem sets will be graded primarily on an effort basis, but if you do not work through 
the problem sets you are unlikely to succeed at the quizzes! We will distribute solutions 
to the problem sets on the day the problem sets are due to give you feedback.  Homework 
assignments are due at the beginning of class on the due date.  Late homework will not be 
accepted. 



Problem 2.1: Cache Access-Time & Performance 
 
This problem requires the knowledge of Handout #2 (Cache Implementations) and 
Lectures 6 & 7.  Please, read these materials before answering the following questions. 
 
Ben is trying to determine the best cache configuration for a new processor. He knows 
how to build two kinds of caches: direct-mapped caches and 4-way set-associative 
caches. The goal is to find the better cache configuration with the given building blocks.  
He wants to know how these two different configurations affect the clock speed and the 
cache miss-rate, and choose the one that provides better performance in terms of average 
latency for a load.   
 
Problem 2.1.A Access Time: Direct-Mapped 

 
Now we want to compute the access time of a direct-mapped cache.  We use the 
implementation shown in Figure H2-A in Handout #2. Assume a 128-KB cache with 8-
word (32-byte) cache lines. The address is 32 bits and byte-addressed, so the two least 
significant bits of the address are ignored since a cache access is word-aligned. The data 
output is also 32 bits (1 word), and the MUX selects one word out of the eight words in a 
cache line. Using the delay equations given in Table 2.1-1, fill in the column for the 
direct-mapped (DM) cache in the table. In the equation for the data output driver, 
‘associativity’ refers to the associativity of the cache (1 for direct-mapped caches, A for 
A-way set-associative caches).  
 
 

Component Delay equation (ps)  DM (ps) SA (ps) 
Tag   Decoder 200×(# of index bits) + 1000 
Data   
Tag   Memory array 200×log2 (# of rows) +  

200×log2 (# of bits in a row) + 1000 Data   
Comparator 200×(# of tag bits) + 1000    
N-to-1 MUX 500×log2 N + 1000    
Buffer driver 2000    
Data output driver 500×(associativity) + 1000    
Valid output 
driver 

1000    

 
Table 2.1-1:  Delay of each Cache Component 

 
What is the critical path of this direct-mapped cache for a cache read? What is the 
access time of the cache (the delay of the critical path)? To compute the access time, 
assume that a 2-input gate (AND, OR) delay is 500 ps. If the CPU clock is 150 MHz, 
how many CPU cycles does a cache access take?  
 



Problem 2.1.B Access Time: Set-Associative 
 
We also want to investigate the access time of a set-associative cache using the 4-way 
set-associative cache in Figure H2-B in Handout #2.  Assume the total cache size is still 
128-KB (each way is 32-KB), a 4-input gate delay is 1000 ps, and all other parameters 
(such as the input address, cache line, etc.) are the same as part 2.1.A. Compute the 
delay of each component, and fill in the column for a 4-way set-associative cache in 
Table 2.1-1.  
 
What is the critical path of the 4-way set-associative cache? What is the access time 
of the cache (the delay of the critical path)? What is the main reason that the 4-way 
set-associative cache is slower than the direct-mapped cache? If the CPU clock is 
150 MHz, how many CPU cycles does a cache access take? 

 
 



 
Problem 2.1.C Miss-rate analysis 

 
Now Ben is studying the effect of set-associativity on the cache performance. Since he 
now knows the access time of each configuration, he wants to know the miss-rate of each 
one. For the miss-rate analysis, Ben is considering two small caches: a direct-mapped 
cache with 8 lines with 16 bytes/line, and a 4-way set-associative cache of the same size.  
For the set-associative cache, Ben tries out two replacement policies – least recently used 
(LRU) and round robin (FIFO). 
 
Ben tests the cache by accessing the following sequence of hexadecimal byte addresses, 
starting with empty caches.  For simplicity, assume that the addresses are only 12 bits.  
Complete the following tables for the direct-mapped cache and both types of 4-way set-
associative caches showing the progression of cache contents as accesses occur (in the 
tables, ‘inv’ = invalid, and the column of a particular cache line contains the {tag,index} 
contents of that line). You only need to fill in elements in the table when a value changes.  
 

 
line in cache hit? 

D-map 
 
Address L0 L1 L2 L3 L4 L5 L6 L7  
110 inv 11 inv inv inv inv inv inv no 
136    13     no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

   
 D-map 
Total Misses  
Total Accesses  
 



 
LRU 

line in cache 
Set 0 Set 1 

hit? 
4-way 
 
Address 

way0 way1 Way2 way3 way0 way1 way2 way3  
110 inv Inv Inv inv 11 inv inv inv no 
136     11 13   no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

 
 4-way LRU 
Total Misses  
Total Accesses  
 
 

FIFO 
line in cache 

Set 0 Set 1 
hit? 

4-way 
 
Address 

way0 way1 way2 way3 way0 way1 way2 way3  
110 inv Inv Inv inv 11 inv inv inv no 
136      13   no 
202 20        no 
1A3          
102          
361          
204          
114          
1A4          
177          
301          
206          
135          

 
 4-way FIFO 
Total Misses  
Total Accesses  



 
Problem 2.1.D Average Latency 

 
Assume that the results of the above analysis can represent the average miss-rates of the 
direct-mapped and the 4-way LRU 128-KB caches studied in 2.1.A and 2.1.B. What 
would be the average memory access latency in CPU cycles for each cache (assume that 
the cache miss penalty is 20 cycles)? Which one is better?  For the different replacement 
policies for the set-associative cache, which one has a smaller cache miss rate for the 
address stream in 2.1.C?  Explain why.  Is that replacement policy always going to yield 
better miss rates? If not, give a counter example using an address stream. 
 



Problem 2.2:  Pipelined Cache Access  
 

This problem requires the knowledge of Lecture 7 and 8.  Please, read these materials 
before answering the following questions.  You may also want to take a look at pipeline 
lectures (Lecture 4 and 5) if you do not feel comfortable with the topic. 
 

Problem 2.2.A  
 
Ben Bitdiddle is designing a five-stage pipelined MIPS processor with separate 32 KB 
direct-mapped primary instruction and data caches.  He runs simulations on his 
preliminary design, and he discovers that a cache access is on the critical path in his 
machine.  After remembering that pipelining his processor helped to improve the 
machine’s performance, he decides to try applying the same idea to caches.  Ben breaks 
each cache access into three stages in order to reduce his cycle time.  In the first stage the 
address is decoded.  In the second stage the tag and data memory arrays are accessed; for 
cache reads, the data is available by the end of this stage.  However, the tag still has to be 
checked—this is done in the third stage. 
 
After pipelining the instruction and data caches, Ben’s datapath design looks as follows: 
 

I-Cache 
Address 
Decode 

I-Cache 
Array 
Access 

I-Cache 
Tag 

Check 

Instruction 
Decode & 
Register 

Fetch 

Execute 

D-
Cache 

Address 
Decode 

D-
Cache 
Array 
Access 

D-
Cache 
Tag 

Check 

Write-
back 

 
Alyssa P. Hacker examines Ben’s design and points out that the third and fourth stages 
can be combined, so that the instruction cache tag check occurs in parallel with 
instruction decoding and register file read access.  If Ben implements her suggestion, 
what must the processor do in the event of an instruction cache tag mismatch?  Can 
Ben do the same thing with load instructions by combining the data cache tag check 
stage with the write-back stage?  Why or why not? 
 
Problem 2.2.B  

 
Alyssa also notes that Ben’s current design is flawed, as using three stages for a data 
cache access won’t allow writes to memory to be handled correctly.  She argues that Ben 
either needs to add a fourth stage or figure out another way to handle writes.  What 
problem would be encountered on a data write?  What can Ben do to keep a three-
stage pipeline for the data cache? 



 
Problem 2.2.C  

 
With help from Alyssa, Ben streamlines his design to consist of eight stages (the handling 
of data writes is not shown): 
 

I-Cache 
Address 
Decode 

I-Cache 
Array 

Access 

I-Cache Tag 
Check, 

Instruction 
Decode & 
Register 

Fetch 

Execute 
D-Cache 
Address 
Decode 

D-Cache 
Array 

Access 

D-Cache 
Tag Check Write-Back 

 
Both the instruction and data caches are still direct-mapped.  Would this scheme still 
work with a set-associative instruction cache?  Why or why not?  Would it work 
with a set-associative data cache?  Why or why not? 
 
 
Problem 2.2.D  

After running additional simulations, Ben realizes that pipelining the caches was not 
entirely beneficial, as now the cache access latency has increased.  If conditional branch 
instructions resolve in the Execute stage, how many cycles is the processor’s branch 
delay? 
 
Problem 2.2.E  

 
Assume that Ben’s datapath is fully-bypassed.  When a load is executed, the data 
becomes available at the end of the D-cache Array Access stage.  However, the tag has 
not yet been checked, so it is unknown whether the data is correct.  If the load data is 
bypassed immediately, before the tag check occurs, then the instruction that depends on 
the load may execute with incorrect data.  How can an interlock in the Instruction 
Decode stage solve this problem?  How many cycles is the load delay using this 
scheme (assuming a cache hit)? 
 
Problem 2.2.F  

 
Alyssa proposes an alternative to using an interlock.  She tells Ben to allow the load data 
to be bypassed from the end of the D-Cache Array Access stage, so that the dependent 
instruction can execute while the tag check is being performed.  If there is a tag 
mismatch, the processor will wait for the correct data to be brought into the cache; then it 
will re-execute the load and all of the instructions behind it in the pipeline before 
continuing with the rest of the program.  What processor state needs to be saved in 
order to implement this scheme?  What additional steps need to be taken in the 
pipeline?  Assume that a DataReady signal is available and isasserted when the load 
data is available in the cache, and is set to 0 when the processor restarts its 
execution (you don’t have to worry about the control logic details of this signal).  
How many cycles is the load delay using this scheme (assuming a cache hit)? 



Problem 2.3: Loop Ordering 
 
This problem requires knowledge of Lecture 8.  Please, read it before answering the 
following questions. 
 
This problem evaluates the cache performances for different loop orderings.  You are 
asked to consider the following two loops, written in C, which calculate the sum of the 
entries in a 128 by 64 matrix of 32-bit integers: 
 

Loop A Loop B 
sum = 0; 
for (i = 0; i < 128; i++) 
  for (j = 0; j < 64; j++) 
    sum += A[i][j]; 

sum = 0; 
for (j = 0; j < 64; j++) 
  for (i = 0; i < 128; i++) 
    sum += A[i][j]; 

 
The matrix A is stored contiguously in memory in row-major order.  Row major order 
means that elements in the same row of the matrix are adjacent in memory as shown in 
the following memory layout: 
 
A[i][j] resides in memory location [4*(64*i + j)] 
 
Memory Location: 
              
0 4   252 256  4*(64*127+63) 

A[0][0] A[0][1] ... A[0][63] A[1][0] ... A[127][63] 
 
For Problem 2.3.A to Problem 2.3.C, assume that the caches are initially empty.  Also, 
assume that only accesses to matrix A cause memory references and all other necessary 
variables are stored in registers.  Instructions are in a separate instruction cache.   
 



 

Problem 2.3.A  
 
Consider a 4KB direct-mapped data cache with 8-word (32-byte) cache lines.   
Calculate the number of cache misses that will occur when running Loop A. 
Calculate the number of cache misses that will occur when running Loop B. 
 

The number of cache misses for Loop A:_____________________________ 

The number of cache misses for Loop B:_____________________________ 
 

Problem 2.3.B  
 
Consider a direct-mapped data cache with 8-word (32-byte) cache lines.  Calculate the 
minimum number of cache lines required for the data cache if Loop A is to run without 
any cache misses other than compulsory misses.  Calculate the minimum number of 
cache lines required for the data cache if Loop B is to run without any cache misses other 
than compulsory misses. 
 

Data-cache size required for Loop A: ____________________________  cache line(s)  

Data-cache size required for Loop B: ____________________________  cache line(s) 
 

Problem 2.3.C  
 
Consider a 4KB fully-associative data cache with 8-word (32-byte) cache lines.  This data 
cache uses a first-in/first-out (FIFO) replacement policy. 
Calculate the number of cache misses that will occur when running Loop A.   
Calculate the number of cache misses that will occur when running Loop B.   
 

The number of cache misses for Loop A:_____________________________ 

The number of cache misses for Loop B:_____________________________ 



Problem 2.4: Three C’s of Cache Misses 
 
Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will 
have no effect.  You can assume the baseline cache is set associative. Explain your reasoning. 
 
 Compulsory Misses Conflict Misses Capacity Misses 
 
 
 
Double the associativity 
(capacity and line size constant) 

   

 
 
Halving the line size 
(associativity and  
# sets constant) 

   

 
 
 
Doubling the number of sets 
(capacity and line size constant) 

   



 
 Compulsory Misses Conflict Misses Capacity Misses 
 
 
 
Adding prefetching 

   

 
 


