NAME: ___________________________

Computer Architecture and Engineering

CS152 Quiz #1

February 12th, 2009
Professor Krste Asanovic

Name:_____ANSWER KEY____
This is a closed book, closed notes exam.

80 Minutes

 10 Pages

Notes:

· Not all questions are of equal difficulty, so look over the entire exam and budget your time carefully.

· Please carefully state any assumptions you make.

· Please write your name on every page in the quiz.
· You must not discuss a quiz's contents with students who have not yet taken the quiz. If you have inadvertently been exposed to the quiz prior to taking it, you must tell the instructor or TA.

· You will get no credit for selecting multiple choice answers without giving explanations if the instructions ask you to explain your choice.

Writing name on each sheet ________ 1 Point
 Question 1
 ________ 26 Points
 Question 2
________ 31 Points
 Question 3
________ 10 Points

Question 4 ________ 12 Points
TOTAL ________ 80 Points

Problem Q.1: Microprogramming Bus-Based Architectures

[26 points]

In this problem, we explore microprogramming by writing microcode for the bus-based implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS Implementation), which we have included at the end of this quiz for your reference.

You are going to implement a fetch-and-add instruction in microcode. Fetch-and-add reads a memory location, adds to it the contents of a source register, stores the sum back to the same memory location, and returns what was originally in memory in the destination register. (This instruction is commonly used to provide synchronization in multiprocessor systems.) The instruction has the following format:

XAdd rd, rs
XAdd performs the following operation:
temp (M[rd] + rs
rs (M[rd]
M[rd] (temp
Fill in Worksheet Q1-1 with the microcode for XAdd. Use don’t cares (*) for fields where it is safe to use don’t cares. Study the hardware description well, and make sure all your microinstructions are legal. To further simplify this problem, ignore the busy signal, and assume that the memory is as fast as the register file.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space provided, or if you have additional comments, you may write in the margins as long as you do it neatly. Your code should exhibit “clean” behavior and not modify any registers (except rs) in the course of executing the instruction. You will receive credit for elegance and efficiency.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch to FETCH0 as discussed in the Handout).

	State
	PseudoCode
	ld

IR
	Reg

Sel
	Reg

Wr
	en

Reg
	ld

A
	ld

B
	ALUOp
	en

ALU
	ld

MA
	Mem

Wr
	en

Mem
	Ex

Sel
	en

Imm
	(Br
	Next State

	FETCH0:
	MA <- PC;

A <- PC
	0
	PC
	0
	1
	1
	*
	*
	0
	1
	*
	0
	*
	0
	N
	*

	
	IR <- Mem
	1
	*
	*
	0
	0
	*
	*
	0
	0
	0
	1
	*
	0
	N
	*

	
	PC <- A+4
	0
	PC
	1
	1
	0
	*
	INC_A_4
	1
	*
	*
	0
	*
	0
	D
	*

	. . .
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	NOP0:
	microbranch

back to FETCH0
	0
	*
	*
	0
	*
	*
	*
	0
	*
	*
	0
	*
	0
	J
	FETCH0

	XADD0:
	MA <- R[rd]
	0
	rd
	0
	1
	*
	*
	*
	0
	1
	*
	0
	*
	0
	N
	*

	
	B <- R[rs]
	0
	rs
	0
	1
	*
	1
	*
	0
	0
	*
	0
	*
	0
	N
	*

	
	A <- Mem
A <- R[rs]
	*
	rs
	1
	1
	1
	0
	*
	0
	0
	0
	1
	*
	0
	N
	*

	
	Mem <- A+B
	*
	*
	*
	0
	*
	*
	ADD
	1
	*
	1
	1
	*
	0
	J
	FETCH0

There are many valid ways to solve this problem. The problem description both said to use don’t cares (*) and to use “elegance and efficiency” so some (but not too many) points were deducted for extra cycles or not using don’t cares everywhere possible.

With these tables, you can think of the signals taking effect at the next rising edge, which is the next row in the table (except with jumps). For example in the last row when writing to memory, the contents of MA don’t matter afterwards. The last row sets ldMA to *, because the next rising edge memory will grab the old address from MA, and at that same rising edge the don’t care will take affect and MA may or may not load a value for the next cycle.

Another important detail is that the IR is important because it contains things like rs, rd, and immediates. Without it the register file wouldn’t know where things like R[rs] are. It needs to be kept around at least until it is no longer needed. In the example above, it is the last row where rs is used.

Actual wrong values in the table (like *’s where it should be 0 or 1) had larger deductions because they result in incorrect rather than just less efficient operation.

Problem Q2: Mem-ALU Pipeline
[31 points]

In this problem, we consider further modifications to the fully bypassed 5-stage MIPS processor pipeline presented in Lecture 3 and Problem Set 1. We will re-order the stages so the Execute (ALU) stage comes after the Memory stage. After this change we will only support register indirect addressing. This change will let us use the contents of memory as one of the operands for arithmetic operations. For example, something like the CAdd instruction could be implemented:

CAdd rd, rs0, rs1
CAdd performs the following operation:
rd (M[rs0] + rs1
In this problem, assume that the control logic is optimized to stall only when necessary, and that the pipeline is fully bypassed. You may ignore branch and jump instructions in this problem.
[image: image1.png]Write
I-Fetch = Decode, Reg. Fetch. Memory Execute -Back
(IF) (ID) (MA) (EX) (WB)

Figure 2-A. Mem-ALU Pipeline
	Problem Q.2.A-B
	Hazards

	
	[16 points]

Besides enabling the CAdd instruction, this pipeline modification will change which hazards exist in the pipeline. We want to compare the pipeline from lecture and the problem set (old) to this modified pipeline with the ALU after memory (new). Assume both the old and new pipelines are fully bypassed with correct control logic. For each problem below, give a sample instruction sequence to clarify your explanation.

Q.2.A – Hazards Removed [8 points]
Give an example where the old pipeline will stall, but the new pipeline will not.
A load followed by an arithmetic instruction in the next two cycles would have had to stall, but not anymore.

LW
r2, 0(r3)

or even
LW
r2, 0(r3)

ADD
r4, r2, r5

ADD
r4, r5, r6

ADD
r4, r4, r2
Q.2.B – Hazards Added [8 points]
Give an example where the new pipeline will stall, but the old pipeline will not.
An arithmetic instruction followed by a dependent memory access.

ADD
r2, r3, r4

LW
r5, 0(r2)
NOTE: Branches were not a valid solution to this problem. On a branch mis-predict, the instructions following the branch are flushed, not stalled. The problem description also said to not consider branches and jumps.
	Problem Q.2.C-D
	Memory Addressing

	
	[15 points]

Q.2.C - Hardware Changes [7 points]
As an architect you want to maintain full compatibility for the old ISA, including support for register-immediate indirect addressing (e.g., LW r2, 8(r3)). How would you modify the new pipeline (and associated control logic) to support this efficiently?

Option A: Include an adder at end of the decode stage (register file) or at the beginning of the memory access stage to compute the effective address. This will increase the cycle time but keep the same CPI.
Option B: Include an adder in between the decode stage (register file) and the memory access stage to compute the effective address. This will keep the same cycle time but increase the CPI because there will be more hazards.
Option C: Add an adder in parallel in the memory access stage. When an address needs to be calculated the memory stage will take two cycles (the result of the adder will be looped back. This will also keep the same cycle time but increase the CPI because there will be more hazards.

Option D: Add a bypass from the output of the ALU back to beginning of the memory stage to route the computed address. This solution adds very little hardware, keeps the same cycle time, but adds complexity and increases CPI with the stage re-use and additional hazards caused by more stages.

There are more ways to solve this.

Q.2.D – Implementing Precise Exceptions [8 points]

Describe a problem that might arise when implementing precise exceptions and propose a simple solution. Hint: consider store instructions…

The problem is that it is hard to draw a single commit line for processing exceptions with the current pipeline because if it is drawn at the WB stage a store (following an exception causing instruction) could still write to memory before being flushed and change architectural state. If the commit line is put in the MA stage, an arithmetic exception could happen after the commit point.

Option A: Buffer stores until all instructions ahead of it are guarantied to commit without exception.

Option B: Kill (undo) write if exception detected. This is worth only 6 pts as this will take much more time.

There are more ways to solve this. If the response correctly described the problem, 4 pts were given. If some notion of the problem with stores was given, 2 pts were awarded.

Problem Q3: ISA Visible? (Short Yes/No Questions)
 [10 points]

The following questions describe two variants of a processor that are otherwise identical. In each case, circle "Yes" if the difference should be visible to software in the ISA, and circle "No" otherwise. You must also briefly explain your reasoning and any assumptions you are making. Ignore differences in performance.

	Problem Q3.A
	More stages

Pipelined processor A has more stages than pipelined Processor B, but both have full bypassing.

No. Pipeline implementations are normally below the ISA. Sometimes it appears to affect it with things like delay slots, but full bypassing and the problem’s claim that the processors are otherwise equal implies that they will have the same amount of delay slots (if any).

	Problem Q3.B
	Control type

Processor A uses microcoded control while Processor B uses hardwired control.
No. This is an implementation detail, that shouldn’t be ISA visible.

	Problem Q3.C
	CISC/RISC

Processor A is considered to be a CISC machine while Processor B is a RISC machine.
Yes. One of the main ways RISC and CISC machines are distinguished is by the types of instructions they provide. Modern implementations could even seem somewhat similar, but the abstractions they provide from above will look different.
	Problem Q3.D
	Microcode type

Machine A has very vertical microcode while machine B has a more horizontal microcode.
No. Once again this is an implementation detail (like Q3.B), that shouldn’t be ISA visible.
	Problem Q3.E
	Stack depth

Stack machine A has more physical registers to implement its stack than stack machine B.

No. This shouldn’t be visible if the ISA says the machine will automatically spill into memory if the stack fills up.
One could argue the case for yes if the system provides no mechanism to automatically spill because then the programmer will need to structure their code to not overflow.

Problem Q.4: Iron Law of Processor Performance (Short Answer)

 [12 points]

Mark whether the following modifications will cause each of the categories to increase, decrease, or whether the modification will have no effect. Explain your reasoning to receive credit.

	
	Instructions / Program
	Cycles / Instruction
	Seconds / Cycle

	Dividing up a pipeline stage into two stages

	No effect if pipeline adds no new hazards that must be solved with programmer added NOP’s (like delay slots).

Increase if it does add new need for NOP’s to be added.
	Increase since more stages will cause more hazards and thus more stalls to deal with them.

	Decrease since this should reduce critical path.

No effect if the stage split is not on the critical path.

	Adding a complex instruction

	Decrease if the added instruction can replace a sequence of instructions.

No effect if it is unusable.
	Increase if implementing the instruction means adding or re-using stages.

No effect if the number of cycles is kept constant but it just lengthens the logic in one stage.
	Increase since more logic and thus longer critical path.

No effect if it is implemented by more or re-used stages but each stage gets no longer.

	Reducing the number of bypass paths

	No effect if the processor can detect the hazards and interlock automatically.

Increase if the programmer needs to add NOP’s for the hazards.
	Increase since more cycles will be spent waiting from the added NOP’s.
	Decrease since bypasses are almost always the critical path.

No effect if the bypass removed happens to not be on the critical path. Meaning another bypass or part of the system is.

	Improving memory access speed

	No effect since instructions make no assumption about memory speed.
	Decrease if access to memory is pipelined (>1 cycle) since it will now take less cycles.

No effect if memory access is done in a single cycle.
	Decrease if memory access is on the critical path or memory was 1 cycle.

No effect if memory is pipelined and just takes less cycles.

Notice how for this problem in many cases more than one way could be argued if the reasoning was there. There are 12 boxes so 1 point was given per box, and a full explanation was needed to get the point (with no partial credit per box). The boxes were too small, but some explanations were on the right track but really just not sufficient and thus not given the point.

Comments:

Splitting up pipeline stage, CPI – Many people wrote something to like “more stages more cycles.” It is important to remember that CPI is a rate, not a latency. The reason that adding a stage will increase CPI is that it will increase the number of hazards and thus the likelihood of stall cycles. In an ideal pipeline with no hazards, adding a stage will not increase the CPI.

Adding a complex instruction, CPI & cycle time – This one varies depending on how the complex instruction is implemented. If the complex instruction is implemented by adding or re-using stages it could be done without changing the cycle time. The cycle time could increase even if this is done because of the additional logic to control and route. Alternatively, the complex instruction could be implemented without additional cycles, but this will almost certainly mean that more logic was added somewhere, increasing the critical path length and increasing the cycle time.

Reducing # of bypasses, cycle time – Many people said no effect since it wasn’t on the critical path. Such a claim (that its not on the critical path) should be clearly stated or even justified. Bypasses are usually the critical path, so much so that some CPU’s even have to pipeline their bypass paths to get reasonable cycle times.
END OF QUIZ

