
	
	CS152

Computer Architecture and Engineering
	

	
	Out of Order Execution and Branch Prediction
	

	Assigned March 17
	Problem Set #4
	Due April 2


	http://inst.eecs.berkeley.edu/~cs152/sp09


The problem sets are intended to help you learn the material, and we encourage you to collaborate with other students and to ask questions in discussion sections and office hours to understand the problems. However, each student must turn in their own solutions to the problems.

The problem sets also provide essential background material for the quizzes. The problem sets will be graded primarily on an effort basis, but if you do not work through the problem sets you are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day the problem sets are due to give you feedback.  Homework assignments are due at the beginning of class on the due date. Homework will not be accepted once solutions are handed out.

This material will be on Quiz 4, not Quiz 3.

Problem 4.1: Superscalar Processor 

Consider the out-of-order, superscalar CPU shown in the diagram. It has the following features:

· Four fully-pipelined functional units: ALU, MEM, FADD, FMUL

· Instruction Fetch and Decode Unit that renames and sends 2 instructions per cycle to the ROB (assume perfect branch prediction and no cache misses)

· An unbounded length Reorder Buffer that can perform the following operations on every cycle:

· Accept two instructions from the Instruction Fetch and Decode Unit

· Dispatch an instruction to each functional unit including Data Memory

· Let Writeback update an unlimited number of entries

· Commit up to 2 instructions in-order

· There is no bypassing or short circuiting. For example, data entering the ROB cannot be passed on to the functional units or committed in the same cycle.

.


[image: image1.emf]
Now consider the execution of the following program on this machine using:

	I1
	loop:
	LD F2, 0(R2)

	I2
	
	LD F3, 0(R3)

	I3
	
	FMUL F4, F2, F3

	I4
	
	LD F2, 4(R2)

	I5
	
	LD F3, 4(R3)

	I6
	
	FMUL F5, F2, F3

	I7
	
	FMUL F6, F4, F5

	I8
	
	FADD F4, F4, F5

	I9
	
	FMUL F6, F4, F5

	I10
	
	FADD F1, F1, F6

	I11
	
	ADD R2, R2, 8

	I12
	
	ADD R3, R3, 8

	I13
	
	ADD R4, R4, -1

	I14
	
	BNEZ R4, loop


	Problem 4.1.A
	


Fill in the renaming tags in the following two tables for the execution of instructions I1 to I10. Tags should not be reused.

	Instr #
	Instruction
	Dest
	Src1
	Src2

	I1
	LD F2, 0(R2)
	T1
	R2
	0

	I2
	LD F3, 0(R3)
	T2
	R3
	0

	I3
	FMUL F4, F2, F3
	
	
	

	I4
	LD F2, 4(R2)
	
	R2
	4

	I5
	LD F3, 4(R3)
	
	R3
	4

	I6
	FMUL F5, F2, F3
	
	
	

	I7
	FMUL F6, F4, F5
	
	
	

	I8
	FADD F4, F4, F5
	
	
	

	I9
	FMUL F6, F4, F5
	
	
	

	I10
	FADD F1, F1, F6
	
	F1
	


Renaming table

	
	I1
	I2
	I3
	I4
	I5
	I6
	I7
	I8
	I9
	I10

	R2
	
	
	
	
	
	
	
	
	
	

	R3
	
	
	
	
	
	
	
	
	
	

	F1
	
	
	
	
	
	
	
	
	
	

	F2
	T1
	
	
	
	
	
	
	
	
	

	F3
	
	T2
	
	
	
	
	
	
	
	

	F4
	
	
	
	
	
	
	
	
	
	

	F5
	
	
	
	
	
	
	
	
	
	

	F6
	
	
	
	
	
	
	
	
	
	


	Problem 4.1.B
	


Consider the execution of one iteration of the loop (I1 to I14). In the following diagram draw the data dependencies between the instructions after register renaming

[image: image2.png]0 0 F2 4 4
OSSO PO IF 0L
R2 RS/( F3 R2, RS/(
F4 F1

F2 F4 F4
Y w7 57 w7 e
8 8 Kl
O OO0
b4 ~ ~ ~
R2 R3 R4 R4




	Problem 4.1.C
	


The attached table is a data structure to record the times when some activity takes place in the ROB. For example, one column records the time when an instruction enters ROB, while the last two columns record, respectively, the time when an instruction is dispatched to the FU’s and the time when results are written back to the ROB. This data structure has been designed to test your understanding of how a Superscalar machine functions. 

Fill in the blanks in last two columns up to slot T13 (You may use the source columns for book keeping – no credit will be taken off for the wrong entries there). 

	Slot
	Instruction
	Cycle instruction entered ROB
	Argument 1
	Argument 2
	dst
	Cycle dispatched
	Cycle written back to ROB

	
	
	
	src1
	cycle available
	Src2
	cycle available
	dst reg
	
	

	T1
	LD F2, 0(R2)
	1
	C
	1
	R2
	1
	F2
	2
	6

	T2
	LD F3, 0(R3)
	1
	C
	1
	R3
	1
	F3
	3
	7

	T3
	FMUL F4, F2, F3
	2
	
	
	F3
	7
	F4
	
	

	T4
	LD F2, 4(R2)
	2
	C
	2
	R2
	
	F2
	
	

	T5
	LD F3, 4(R3)
	3
	C
	3
	R3
	
	F3
	
	

	T6
	FMUL F5, F2, F3
	3
	
	
	
	
	F5
	
	

	T7
	FMUL F6, F4, F5
	4
	
	
	
	
	F6
	
	

	T8
	FADD F4, F4, F5
	4
	
	
	
	
	F4
	
	

	T9
	FMUL F6, F4, F5
	5
	
	
	
	
	F6
	
	

	T10
	FADD F1, F1, F6
	5
	
	
	
	
	F1
	
	

	T11
	ADD R2, R2, 8
	6
	R2
	6
	C
	6
	R2
	
	

	T12
	ADD R3, R3, 8
	6
	R3
	6
	C
	6
	R3
	
	

	T13
	ADD R4, R4, -1
	7
	R4
	7
	C
	7
	R4
	
	

	T14
	BNEZ R4, loop
	7
	
	
	C
	Loop
	
	
	

	T15
	LD F2, 0(R2)
	8
	C
	8
	
	
	F2
	10
	14

	T16
	LD F3, 0(R3)
	8
	C
	8
	
	
	F3
	11
	15

	T17
	FMUL F4, F2, F3
	9
	
	
	
	
	F4
	
	

	T18
	LD F2, 4(R2)
	9
	C
	9
	
	
	F2
	
	

	T19
	LD F3, 4(R3)
	10
	C
	10
	
	
	F3
	
	

	T20
	FMUL F5, F2, F3
	10
	
	
	
	
	F5
	
	

	T21
	FMUL F6, F4, F5
	11
	
	
	
	
	F6
	
	

	T22
	FADD F4, F4, F5
	11
	
	
	
	
	F4
	
	

	T23
	FMUL F6, F4, F5
	12
	
	
	
	
	F6
	
	

	T24
	FADD F1, F1, F6
	12
	
	
	
	
	F1
	
	

	T25
	ADD R2, R2, 8
	13
	
	
	C
	13
	R2
	
	

	T26
	ADD R3, R3, 8
	13
	
	
	C
	13
	R3
	
	

	T27
	ADD R4, R4, -1
	14
	
	
	C
	14
	R4
	
	

	T28
	BNEZ R4, loop
	14
	
	
	C 
	Loop
	
	
	


	Problem 4.1.D
	


Identify the instructions along the longest latency path in completing this iteration of the loop (up to instruction 13).  Suppose we consider an instruction to have executed when its result is available in the ROB. How many cycles does this iteration take to execute? 

	Problem 4.1.E
	


Do you expect the same behavior, i.e., the same dependencies and the same number of cycles, for the next iteration? (You may use the slots from T15 onwards in the attached diagram for bookkeeping to answer this question). Please give a simple reason why the behavior may repeat, or identify a resource bottleneck or dependency that may preclude the repetition of the behavior.

	Problem 4.1.F
	


Can you improve the performance by adding at most one additional memory port and a FP Multiplier? Explain briefly.

Yes / No 

	Problem 4.1.G
	


What is the minimum number of cycles needed to execute a typical iteration of this loop if we keep the same latencies for all the units but are allowed to use as many FUs and memory ports and are allowed to fetch and commit as many instructions as we want.

 Problem 4.2: Register Renaming and Static vs. Dynamic Scheduling 

The following MIPS code calculates the floating-point expression E = A * B + C * D, where the addresses of A, B, C, D, and E are stored in R1, R2, R3, R4, and R5, respectively:

L.S
F0, 0(R1)

L.S
F1, 0(R2)

MUL.S
F0, F0, F1

L.S
F2, 0(R3)

L.S
F3, 0(R4)

MUL.S
F2, F2, F3

ADD.S
F0, F0, F2

S.S
F0, 0(R5)

	Problem 4.2.A
	Simple Pipeline


Calculate the number of cycles this code sequence would take to execute (i.e., the number of cycles between the issue of the first load instruction and the issue of the final store, inclusive) on a simple in-order pipelined machine that has no bypassing.  The datapath includes a load/store unit, a floating-point adder, and a floating-point multiplier.  Assume that loads have a two-cycle latency, floating-point multiplication has a four-cycle latency and floating-point addition has a two-cycle latency. Write-back for floating-point registers takes one cycle.  Also assume that all functional units are fully pipelined and ignore any write back conflicts.  Give the number of cycles between the issue of the first load instruction and the issue of the final store, inclusive.

	Problem 4.2.B
	Static Scheduling


Reorder the instructions in the code sequence to minimize the execution time.  Show the new instruction sequence and give the number of cycles this sequence takes to execute on the simple in-order pipeline.

	Problem 4.2.C
	Fewer Registers


Rewrite the code sequence, but now using only two floating-point registers.  Optimize for minimum run-time.  You may need to use temporary memory locations to hold intermediate values (this process is called register-spilling when done by a compiler).  List the code sequence and give the number of cycles this takes to execute.
	Problem 4.2.D
	Register renaming and dynamic scheduling


Calculate the effect of running the original code on a single-issue machine with register renaming and out-of-order issue. Ignore structural hazards apart from the single instruction decode per cycle. Show how the code is executed and give the number of cycles required. Compare it with results from optimized execution in 4.2.B.

	Problem 4.2E
	Effect of Register Spills


Now calculate the effect of running code you wrote in 4.2.C on the single-issue machine with register renaming and out-of-order issue from 4.3.D. Compare the number of cycles required to execute the program. What are the differences in the program and/or architecture that change the number of cycles required to execute the program?  You should assume that all load instructions before a store must issue before the store is issued, and load instructions after a store must wait for the store to issue.

Problem 4.3: Branch Prediction
This problem will investigate the effects of adding global history bits to a standard branch prediction mechanism. In this problem assume that the MIPS ISA has no delay slots.

Throughout this problem we will be working with the following program:

loop:

LW
R4, 0(R3)


ADDI
R3, R3, 4


SUBI
R1, R1, 1

b1:


BEQZ
R4, b2


ADDI
R2, R2, 1

b2: 


BNEZ
R1, loop
Assume the initial value of R1 is n (n>0).

Assume the initial value of R2 is 0 (R2 holds the result of the program).

Assume the initial value of R3 is p (a pointer to the beginning of an array of 32-bit integers).

All branch prediction schemes in this problem will be based on those covered in lecture.  We will be using a 2-bit predictor state machine, as shown below.

[image: image3.wmf]
Figure 4.3-A. BP bits state diagram

In state 1X we will guess not taken. In state 0X we will guess taken.

Assume that b1 and b2 do not conflict in the BHT.

	Problem 4.3.A
	Program


What does the program compute? That is, what does R2 contain when we exit the loop?

	Problem 4.3.B
	2-bit branch prediction


Now we will investigate how well our standard 2-bit branch predictor performs. Assume the inputs to the program are n=8 and p[0] = 1, p[1] = 0, p[2] = 1, p[3] = 0,… etc.; i.e. the array elements exhibit an alternating pattern of 1's and 0's. Fill out Table 4.3-1 (note that the first few lines are filled out for you). What is the number of mispredicts?

Table 4.3-1 contains an entry for every branch (either b1 or b2) that is executed. The Branch Predictor (BP) bits in the table are the bits from the BHT.  For each branch, check the corresponding BP bits (indicated by the bold entries in the examples) to make a prediction, then update the BP bits in the following entry (indicated by the italic entries in the examples).
	Problem 4.3.C
	Branch prediction with one global history bit


Now we add a global history bit to the branch predictor, as described in lecture. Fill out Table 4.3-2, and again give the total number of mispredicts you get when running the program with the same inputs.
	Problem 4.3.D
	Branch prediction with two global history bits


Now we add a second global history bit.  Fill out Table 4.3-3. Again, compute the number of mispredicts you get for the same input.
	Problem 4.3.E
	Analysis I


Compare your results from problems 4.3.B, 4.3.C, and 4.3.D. When do most of the mispredicts occur in each case (at the beginning, periodically, at the end, etc.)? What does this tell you about global history bits in general? For large n, what prediction scheme will work best? Explain briefly.
	Problem 4.3.F
	Analysis II


The input we worked with in this problem is quite regular. How would you expect things to change if the input were random (each array element were equally probable 0 or 1). Of the three branch predictors we looked at in this problem, which one will perform best for this type of input? Is your answer the same for large and small n?

What does this tell you about when additional history bits are useful and when they hurt you?
	System

State
	Branch Predictor
	Branch Behavior

	PC
	R3/R4
	b1 bits
	b2 bits
	Predicted
	Actual

	b1
	4/1
	10
	10
	N
	N

	b2
	4/1
	10
	10
	N
	T

	b1
	8/0
	10
	11
	N
	T

	b2
	8/0
	11
	11
	N
	T

	b1
	12/1
	11
	00
	
	

	b2
	12/1
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	

	b1
	
	
	
	
	

	b2
	
	
	
	
	


Table 4.3-1

	System

State
	Branch Predictor
	Behavior

	PC
	R3/R4
	history
	b1 bits
	b2 bits
	
	

	
	
	bit
	set 0
	set 1
	set 0
	set 1
	Predicted
	Actual

	b1
	4/1
	1
	10
	10
	10
	10
	N
	N

	b2
	4/1
	0
	10
	10
	10
	10
	N
	T

	b1
	8/0
	1
	10
	10
	11
	10
	
	

	b2
	8/0
	
	
	
	
	
	
	

	b1
	12/1
	
	
	
	
	
	
	

	b2
	12/1
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	


Table 4.3-2

	System

State
	Branch Predictor
	Behavior



	PC
	R3/R4
	history
	b1 bits
	b2 bits
	
	

	
	
	bits
	set 00
	set 01
	set 10
	set 11
	set 00
	set 01
	set 10
	set 11
	Predicted
	Actual

	b1
	4/1
	11
	10
	10
	10
	10
	10
	10
	10
	10
	N
	N

	b2
	4/1
	01
	10
	10
	10
	10
	10
	10
	10
	10
	N
	T

	b1
	8/0
	10
	10
	10
	10
	10
	10
	11
	10
	10
	
	

	b2
	8/0
	
	
	
	
	
	
	
	
	
	
	

	b1
	12/1
	
	
	
	
	
	
	
	
	
	
	

	b2
	12/1
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	

	b1
	
	
	
	
	
	
	
	
	
	
	
	

	b2
	
	
	
	
	
	
	
	
	
	
	
	


Table 4.3-3
Problem 4.4: Managing Out-of-order Execution 

This problem investigates the operation of a superscalar processor with branch prediction, register renaming, and out-of-order execution.  The processor holds all data values in a physical register file, and uses a rename table to map from architectural to physical register names.  A free list is used to track which physical registers are available for use.  A reorder buffer (ROB) contains the bookkeeping information for managing the out-of-order execution (but, it does not contain any register data values

When a branch instruction is encountered, the processor predicts the outcome and takes a snapshot of the rename table.  If a misprediction is detected when the branch instruction later executes, the processor recovers by flushing the incorrect instructions from the ROB, rolling back the “next available” pointer, updating the free list, and restoring the earlier rename table snapshot.

We will investigate the execution of the following code sequence (assume that there is no branch-delay slot):

    loop:  lw    r1, 0(r2)    # load r1 from address in r2

           addi  r2, r2, 4    # increment r2 pointer

           beqz  r1, skip     # branch to “skip” if r1 is 0

           addi  r3, r3, 1    # increment r3 

    skip:  bne   r2, r4, loop
# loop until r2 equals r4

The diagram for Question 4.4.A on the next page shows the state of the processor during execution of the given code sequence.  An instance of each instruction in the loop has been issued into the ROB (the beqz instruction has been predicted not-taken), but none of the instructions have begun execution.  In the diagram, old values which are no longer valid are shown in the following format: P1.  The rename table snapshots and other bookkeeping information for branch misprediction recovery are not shown.

	Problem 4.4.A
	


Assume that the following events occur in order (though not necessarily in a single cycle):

Step 1. The first three instructions from the next loop iteration (lw, addi, beqz) are written into the ROB (note that the bne instruction has been predicted taken).

Step 2. All instructions which are ready after Step 1 execute, write their result to the physical register file, and update the ROB.  Note that this step only occurs once.

Step 3. As many instructions as possible commit.

Update the diagram below to reflect the processor state after these events have occured.  Cross out any entries which are no longer valid.   Note that the “ex” field should be marked when an instruction executes, and the “use” field should be cleared when it commits.  Be sure to update the “next to commit” and “next available” pointers.  If the load executes, assume that the data value it retrieves is 0.  

	Rename Table

	R1

	P1

	P4

	
	R2

	P2

	P5

	
	R3

	P3

	P6

	
	R4

	P0

		

	
	Physical Regs
P0

8016
p

P1

6823
p

P2

8000
p

P3

7
p

P4

P5

P6

P7

P8

P9


	Free List
P4

P5

P6

P7

P8

P9

…



	Reorder Buffer (ROB)
→
use

ex

op

p1

PR1

p2

PR2

Rd

LPRd

PRd

next to commit

x

lw

p

P2

r1

P1

P4

x

addi

p

P2

r2
P2

P5

x

beqz

P4

x

addi

p

P3

r3

P3

P6

next available

→
x

bne

P5

p

P0



	


In an attempt to keep this problem set from being REALLY long the remainder of this problem has been removed. For additional practice and enlightenment feel free to look at last year’s: http://inst.eecs.berkeley.edu/~cs152/sp08/assignments/ps4.pdf
PAGE  
1

_1161093728.vsd
Instruction
Queue


ROB

(infinite)


2 Instr per cycle


ALU


FADD


+


Data
Mem


FMUL


Regfile


Issue as many as possible


Writeback as many as possible


Commit at most 2 instr per cycle



