
 CS152 Computer Architecture and

Engineering

ISAs, Microprogramming and Pipelining

January 29,

2009

Assigned January 30 Problem Set #1 Due February 10

http://inst.eecs.berkeley.edu/~cs152/sp09

The problem sets are intended to help you learn the material, and we encourage you to

collaborate with other students and to ask questions in discussion sections and office hours to

understand the problems. However, each student must turn in their own solutions to the

problems.

The problem sets also provide essential background material for the quizzes. The problem sets

will be graded primarily on an effort basis, but if you do not work through the problem sets you

are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day

the problem sets are due to give you feedback. Homework assignments are due at the beginning

of class on the due date. Homework will not be accepted once solutions are handed out.

Problem 1: CISC, RISC, and Stack: Comparing ISAs
In this problem, your task is to compare three different ISAs. x86 is an extended accumulator,

CISC architecture with variable length instructions. MIPS64 is a load-store, RISC architecture

with fixed length instructions. We will also look at a simple stack-based ISA.

Problem 1.A CISC

Let us begin by considering the following C code:

int b; //a global variable

void multiplyByB(int a){

 int i, result;

 for(i = 0; i<b; i++){

 result=result+a;

 }

}

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following

x86 instruction sequence. (On entry to this code, register %ecx contains i, and register %edx

contains result, and register %eax contains a. b is stored in memory at location 0x8049580)

xor %edx,%edx

xor %ecx,%ecx

 loop: cmp 0x8049580,%ecx

 jl L1

 jmp done

 L1: add %eax,%edx

 inc %ecx

 jmp loop

 done: ...

The meanings and instruction lengths of the instructions used above are given in the following

table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>.

Instruction Operation Length
add RDEST, RSRC RSRC ! <RSRC> + <RDST> 2 bytes
cmp imm32, RSRC2 Temp ! <RSRC2> - MEM[imm32] 6 bytes
inc RDEST RDEST ! <RDEST> + 1 1 byte
jmp label jump to the address specified by label 2 bytes
jl label if (SF"OF)

 jump to the address specified by label

2 bytes

xor RDEST, RSRC RDEST ! RDEST # RSRC 2 bytes

Notice that the jump instruction jl (jump if less than) depends on SF and OF, which are status

flags. Status flags, also known as condition codes, are analogous to the condition register used in

the MIPS architecture. Status flags are set by the instruction preceding the jump, based on the

result of the computation. Some instructions, like the cmp instruction, perform a computation and

set status flags, but do not return any result. The meanings of the status flags are given in the

following table:

Name Purpose Condition Reported

OF Overflow Result exceeds positive or negative limit of number range

SF Sign Result is negative (less than zero)

How many bytes is the program? For the above x86 assembly code, how many bytes of

instructions need to be fetched if b = 10? Assuming 32-bit data values, how many bytes of data

memory need to be fetched? Stored?

Problem 1.B RISC

Translate each of the x86 instructions in the following table into one or more MIPS64

instructions. Place the L1 and loop labels where appropriate. You should use the minimum

number of instructions needed to translate each x86 instruction. Assume that upon entry, R1

contains b, R2 contains a, R3 contains i. R4 should receive result. If needed, use R5 as a

condition register, and R6, R7, etc., for temporaries. You should not need to use any floating

point registers or instructions in your code. A description of the MIPS64 instruction set

architecture can be found in Appendix B of Hennessy & Patterson.

x86 instruction label MIPS64 instruction sequence
xor %edx,%edx

xor %ecx,%ecx

cmp 0x8049580,%ecx

jl L1

jmp done

add %eax,%edx

inc %ecx

jmp loop

... done: ...

How many bytes is the MIPS64 program using your direct translation? How many bytes of

MIPS64 instructions need to be fetched for b = 10 using your direct translation? Assuming 32-bit

data values, how many bytes of data memory need to be fetched? Stored?

Problem 1.C Stack

In a stack architecture, all operations occur on top of the stack. Only push and pop access

memory, and all other instructions remove their operands from the stack and replace them with

the result. The hardware implementation we will assume for this problem set uses stack registers

for the top two entries; accesses that involve other stack positions (e.g., pushing or popping

something when the stack has more than two entries) use an extra memory reference. The table

below gives a subset of a simple stack-style instruction set. Assume each opcode is a single

byte. Labels, constants, and addresses require two bytes.

Example instruction Meaning

PUSH A push M[A] onto stack

POP A pop stack and place popped value in M[A]

ADD pop two values from the stack; ADD them; push result onto stack

SUB pop two values from the stack; SUBtract top value from the 2nd;

push result onto stack

ZERO zeroes out the value at top of stack

INC pop value from top of stack; increments value by one

push new value back on the stack

BEQZ label pop value from stack; if it’s zero, continue at label;

else, continue with next instruction

BNEZ label pop value from stack; if it’s not zero, continue at label;

else, continue with next instruction

GOTO label continue execution at location label

Translate the multiplyByB loop to the stack ISA. For uniformity, please use the same control

flow as in parts a and b. Assume that when we reach the loop, a is the only thing on the stack.

Assume b is still at address 0x8000 (to fit within a 2 byte address specifier).

How many bytes is your program? Using your stack translations from part (c), how many bytes

of stack instructions need to be fetched for b = 10? Assuming 32-bit data values, how many

bytes of data memory need to be fetched? Stored? If you could push and pop to/from a four-

entry register file rather than memory (the Java virtual machine does this), what would be the

resulting number of bytes fetched and stored?

Problem 1.D Conclusions

In just a few sentences, compare the three ISAs you have studied with respect to code size,

number of instructions fetched, and data memory traffic.

Problem 1.E Optimization

To get more practice with MIPS64, optimize the code from part B so that it can be expressed in

fewer instructions. There are solutions more efficient than simply translating each individual

x86 instruction as you did in part B. Your solution should contain commented assembly code, a

paragraph which explains your optimizations, and a short analysis of the savings you obtained.

Problem 2: Microprogramming and Bus-Based Architectures

In this problem, we explore microprogramming by writing microcode for the bus-based

implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS

Implementation). Read the instruction fetch microcode in Table H1-3 of Handout #1. Make sure

that you understand how different types of data and control transfers are achieved by setting the

appropriate control signals before attempting this problem.

In order to further simplify this problem, ignore the busy signal, and assume that the memory is

as fast as the register file.

The final solution should be elegant and efficient (e.g. number of new states needed, amount of

new hardware added).

Problem 2.A Implementing Memory-to-Memory Add

For this problem, you are to implement a new memory-memory add operation. The new

instruction has the following format:

ADDm rd, rs, rt

ADDm performs the following operation:

M[rd] ! M[rs] + M[rt]

Fill in Worksheet 2.A with the microcode for ADDm. Use don’t cares (*) for fields where it is

safe to use don’t cares. Study the hardware description well, and make sure all your

microinstructions are legal.

Please comment your code clearly. If the pseudo-code for a line does not fit in the space

provided, or if you have additional comments, you may write in the margins as long as you do it

neatly. Your code should exhibit “clean” behavior and not modify any registers (except rd) in the

course of executing the instruction.

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch

to FETCH0 as discussed above).

State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Ex
Sel

en
Imm

µBr Next State

FETCH0: MA <- PC;
A <- PC

0 PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N *

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

0 * * 0 * * * 0 * * 0 * 0 J FETCH0

ADDM0:

Worksheet 2.A

Problem 2.B Implementing DBNEZ Instruction

DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as

conditional branch instructions (I-Format) on MIPS:

opcode rs … offset

6 bits 5 bits 5 bits 16 bits

DBNEZ decrements register rs by 1, writes the result back to rs, and branches to (PC+4)+offset,

if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This

instruction can be used for efficiently implementing loops.

Your task is to fill out Worksheet 2.B for DBNEZ instruction. You should try to optimize your

implementation for the minimal number of cycles necessary and for which signals can be set to

don’t-cares. You do not have to worry about the busy signal.

(Note that the microcode for the fetch stage has changed slightly from the one in the Problem

2.A, to allow for more efficient implementation of some instructions.)

Problem 2.C Instruction Execution Times

How many cycles does it take to execute the following instructions in the microcoded MIPS

machine? Use the states and control points from MIPS-Controller-2 in Lecture 4 and assume

Memory will not assert its busy signal.

Instruction Cycles
SUB R3,R2,R1
SUBI R2,R1,#4
SW R1,0(R2)
BEQZ R1,label # (R1 == 0)
BNEZ R1,label # (R1 != 0)
J label
JR R1
JAL label
JALR R1

Which instruction takes the most cycles to execute? Which instruction takes the fewest cycles to

execute?

State PseudoCode ldIR Reg
Sel

Reg
Wr

en
Reg

ldA ldB ALUOp en
ALU

ld
MA

Mem
Wr

en
Mem

Ex
Sel

en
Imm

µBr Next State

FETCH0: MA <- PC;
A <- PC

* PC 0 1 1 * * 0 1 * 0 * 0 N *

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N *

 PC <- A+4;
B <- A+4

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D *

. . .

NOP0: microbranch
back to FETCH0

* * * 0 * * * 0 * * 0 * 0 J FETCH0

DBNEZ:

Worksheet 2.B

Problem 2.D Exponentiation

Ben Bitdiddle needs to compute the power function for small numbers. Realizing there is no

multiply instruction in the microcoded MIPS machine, he uses the following code to calculate

the result when an unsigned number m is raised to the nth power, where n is another unsigned

number.

 if (m == 0) {

 result = 0;

 }

 else {

 result = 1;

 i = 0;

 while (i < n) {

 temp = result;

 j = 1;

 while (j < m) {

 result += temp;

 j++;

 }

 i++;

 }

 }

The variables i, j, m, n, temp, and result are unsigned 32-bit values.

Write the MIPS assembly that implements Ben’s code. Use only the MIPS instructions that can

be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR,

BEQZ, and BNEZ). The microcoded MIPS machine does not have branch delay slots. Use R1

for m, R2 for n, and R3 for result. At the end of your code, only R3 must have the correct

value. The values of all other registers do not have to be preserved.

How many MIPS instructions are executed to calculate the power function? How many cycles

does it take to calculate the power function? Again, use the states and control points from MIPS-

Controller-2 and assume Memory will not assert its busy signal.

m, n Instructions Cycles

0, 1

1, 0

2, 2

3, 4

M, N

Problem 3: A 5-Stage Pipeline with an Additional Adder

In this problem we consider a new datapath to improve the performance of the fully-bypassed 5-

stage 32-bit MIPS processor datapath given in Lecture 4. In the new datapath the ALU the

Execute stage is replaced by a simple adder and the original ALU is moved from the Execute

stage to the Memory stage (See Figure 3-A). The adder in the 3
rd

 stage (formerly Execute) is

used only for address calculations involving load/store instructions. For all other instructions,

the data is simply forwarded to the 4
th

 stage.

The ALU will now run in parallel with the data memory in the 4
th

 stage of the pipeline (formerly

Mem). During a load/store instruction, the ALU is inactive, while the data memory is inactive

during the ALU instructions. In this problem we will ignore jump and branch instructions.

Problem 3.A Elimination of a hazard

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a

pipeline bubble in the original datapath, but not in the new datapath.

Problem 3.B New hazard

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a

pipeline bubble in the new datapath, but not in the original datapath.

Problem 3.C Comparison

Compare the advantages and disadvantages of the new datapath. Which one would you

recommend? Justify your choice.

Problem 3.D Datapath Improvement

Consider a MIPS ISA that only supports register indirect addressing, i.e. has no

displacement (base+offset) addressing mode. Assuming the new machine only had to

support this ISA, how could the datapath be improved? Draw the new datapath showing

your design. (You do not have to show everything -- just the important features like

pipeline registers, major components, major connections, etc.) Compare the hazards in

this new datapath with the hazards in datapaths shown in Figure 3-A and the original

datapath in 4. Justify the new datapath.

Problem 3.E Displacement Addressing Synthesizing

If the MIPS ISA did not have displacement addressing, what would programmers do?

Could you still write the same programs as before? Explain.

Problem 3.F Jumps and Branches

Now we will consider jumps and branches for the pipeline shown in part A of this

problem. Assume that the branch target calculation is performed in the Instruction

Decode stage. In what pipeline stages can you put the logic to determine whether a

conditional branch is taken? (don’t worry about duplicating logic) What are the

advantages and disadvantages between the different choices? For each choice, consider

the number of cycles for the branch delay, any additional stall conditions, and any

potential changes in the clock period.

