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The problem sets are intended to help you learn the material, and we encourage you to 

collaborate with other students and to ask questions in discussion sections and office hours to 

understand the problems. However, each student must turn in their own solutions to the 

problems. 

The problem sets also provide essential background material for the quizzes. The problem sets 

will be graded primarily on an effort basis, but if you do not work through the problem sets you 

are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day 

the problem sets are due to give you feedback.  Homework assignments are due at the beginning 

of class on the due date. Homework will not be accepted once solutions are handed out. 



Problem 1: CISC, RISC, and Stack: Comparing ISAs 
In this problem, your task is to compare three different ISAs.  x86 is an extended accumulator, 

CISC architecture with variable length instructions.  MIPS64 is a load-store, RISC architecture 

with fixed length instructions.  We will also look at a simple stack-based ISA. 

 

Problem 1.A CISC 

 

Let us begin by considering the following C code: 

 
int b;  //a global variable 

 

void multiplyByB(int a){ 

  int i, result; 

  for(i = 0; i<b; i++){ 

    result=result+a; 

  } 

} 

 

Using gcc and objdump on a Pentium III, we see that the above loop compiles to the following 

x86 instruction sequence.  (On entry to this code, register %ecx contains i, and register %edx 

contains result, and register %eax contains a.  b is stored in memory at location 0x8049580) 

 
xor    %edx,%edx 

xor    %ecx,%ecx 

 loop:      cmp    0x8049580,%ecx 

   jl     L1  

   jmp    done  

 L1:  add    %eax,%edx 

   inc    %ecx 

   jmp    loop  

 done:    ... 

 

The meanings and instruction lengths of the instructions used above are given in the following 

table. Registers are denoted with RSUBSCRIPT, register contents with <RSUBSCRIPT>. 

  

Instruction Operation Length 
add RDEST, RSRC RSRC ! <RSRC> + <RDST> 2 bytes 
cmp imm32, RSRC2  Temp ! <RSRC2> - MEM[imm32] 6 bytes 
inc RDEST RDEST ! <RDEST> + 1 1 byte 
jmp label jump to the address specified by label 2 bytes 
jl label if (SF"OF) 

  jump to the address specified by label 

2 bytes 

xor RDEST, RSRC  RDEST ! RDEST # RSRC 2 bytes 

 

Notice that the jump instruction jl (jump if less than) depends on SF and OF, which are status 

flags. Status flags, also known as condition codes, are analogous to the condition register used in 

the MIPS architecture. Status flags are set by the instruction preceding the jump, based on the 

result of the computation. Some instructions, like the cmp instruction, perform a computation and 



set status flags, but do not return any result. The meanings of the status flags are given in the 

following table: 

 

Name Purpose Condition Reported 

OF Overflow Result exceeds positive or negative limit of number range 

SF Sign Result is negative (less than zero) 

 

How many bytes is the program?  For the above x86 assembly code, how many bytes of 

instructions need to be fetched if b = 10?  Assuming 32-bit data values, how many bytes of data 

memory need to be fetched? Stored? 

 

Problem 1.B RISC 

 

Translate each of the x86 instructions in the following table into one or more MIPS64 

instructions.  Place the L1 and loop labels where appropriate.  You should use the minimum 

number of instructions needed to translate each x86 instruction. Assume that upon entry, R1 

contains b, R2 contains a, R3 contains i.  R4 should receive result. If needed, use R5 as a 

condition register, and R6, R7, etc., for temporaries. You should not need to use any floating 

point registers or instructions in your code.  A description of the MIPS64 instruction set 

architecture can be found in Appendix B of Hennessy & Patterson.   

 

x86 instruction label MIPS64 instruction sequence 
xor    %edx,%edx 

          

  

 

 

xor    %ecx,%ecx 

          

  

 

 

cmp    0x8049580,%ecx   

 

 

jl     L1  

 

  

 

 

jmp    done   

 

 

add    %eax,%edx   

 

 

inc    %ecx 

 

  

 

 

jmp    loop   

 

 

... done: ... 

 

How many bytes is the MIPS64 program using your direct translation?  How many bytes of 

MIPS64 instructions need to be fetched for b = 10 using your direct translation? Assuming 32-bit 

data values, how many bytes of data memory need to be fetched? Stored? 



 

Problem 1.C Stack 

 

In a stack architecture, all operations occur on top of the stack.  Only push and pop access 

memory, and all other instructions remove their operands from the stack and replace them with 

the result.  The hardware implementation we will assume for this problem set uses stack registers 

for the top two entries; accesses that involve other stack positions (e.g., pushing or popping 

something when the stack has more than two entries) use an extra memory reference.  The table 

below gives a subset of a simple stack-style instruction set.  Assume each opcode is a single 

byte.  Labels, constants, and addresses require two bytes. 

 

Example instruction Meaning 

PUSH A push M[A] onto stack 

POP A pop stack and place popped value in M[A] 

ADD pop two values from the stack; ADD them; push result onto stack 

SUB pop two values from the stack; SUBtract top value from the 2nd; 

push result onto stack 

ZERO zeroes out the value at top of stack 

INC pop value from top of stack; increments value by one 

push new value back on the stack  

BEQZ label pop value from stack; if it’s zero, continue at label; 

else, continue with next instruction 

BNEZ label pop value from stack; if it’s not zero, continue at label; 

else, continue with next instruction 

GOTO label continue execution at location label 

 

 

Translate the multiplyByB loop to the stack ISA.  For uniformity, please use the same control 

flow as in parts a and b.  Assume that when we reach the loop, a is the only thing on the stack.  

Assume b is still at address 0x8000 (to fit within a 2 byte address specifier). 

 

How many bytes is your program?  Using your stack translations from part (c), how many bytes 

of stack instructions need to be fetched for b = 10? Assuming 32-bit data values, how many 

bytes of data memory need to be fetched? Stored?  If you could push and pop to/from a four-

entry register file rather than memory (the Java virtual machine does this), what would be the 

resulting number of bytes fetched and stored? 

 

 

 

 

 

 

 

 

 

 



Problem 1.D Conclusions 

 

In just a few sentences, compare the three ISAs you have studied with respect to code size, 

number of instructions fetched, and data memory traffic.    

 

 

Problem 1.E Optimization 

 

To get more practice with MIPS64, optimize the code from part B so that it can be expressed in 

fewer instructions.  There are solutions more efficient than simply translating each individual 

x86 instruction as you did in part B. Your solution should contain commented assembly code, a 

paragraph which explains your optimizations, and a short analysis of the savings you obtained. 

 

 



Problem 2:  Microprogramming and Bus-Based Architectures  

 

In this problem, we explore microprogramming by writing microcode for the bus-based 

implementation of the MIPS machine described in Handout #1 (Bus-Based MIPS 

Implementation). Read the instruction fetch microcode in Table H1-3 of Handout #1.  Make sure 

that you understand how different types of data and control transfers are achieved by setting the 

appropriate control signals before attempting this problem. 

In order to further simplify this problem, ignore the busy signal, and assume that the memory is 

as fast as the register file. 

 

The final solution should be elegant and efficient (e.g. number of new states needed, amount of 

new hardware added). 

 

Problem 2.A Implementing Memory-to-Memory Add 

 

For this problem, you are to implement a new memory-memory add operation.  The new 

instruction has the following format: 

ADDm rd, rs, rt 

ADDm performs the following operation: 

M[rd] ! M[rs] + M[rt]   

Fill in Worksheet 2.A with the microcode for ADDm.  Use don’t cares (*) for fields where it is 

safe to use don’t cares.  Study the hardware description well, and make sure all your 

microinstructions are legal. 

Please comment your code clearly. If the pseudo-code for a line does not fit in the space 

provided, or if you have additional comments, you may write in the margins as long as you do it 

neatly.  Your code should exhibit “clean” behavior and not modify any registers (except rd) in the 

course of executing the instruction. 

Finally, make sure that the instruction fetches the next instruction (i.e., by doing a microbranch 

to FETCH0 as discussed above). 



State PseudoCode ldIR Reg 
Sel 

Reg 
Wr 

en 
Reg 

ldA ldB ALUOp en 
ALU 

ld 
MA 

Mem 
Wr 

en 
Mem 

Ex 
Sel 

en 
Imm 

µBr Next State 

FETCH0: MA <- PC; 
A <- PC 

0 PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 0 0 1 * 0 N * 

 PC <- A+4 0 PC 1 1 0 * INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

0 * * 0 * * * 0 * * 0 * 0 J FETCH0 

ADDM0:                 

                 

                 

                 

                 

                 

                 

                 

                 

 

 

Worksheet 2.A



 

Problem 2.B Implementing DBNEZ Instruction 

 

DBNEZ stands for Decrease Branch Not Equal Zero. This instruction uses the same encoding as 

conditional branch instructions (I-Format) on MIPS: 

 

opcode rs … offset 

6 bits 5 bits 5 bits 16 bits 

 

DBNEZ decrements register rs by 1, writes the result back to rs, and branches to (PC+4)+offset, 

if result in rs is not equal to 0. Offset is sign extended to allow for backward branches. This 

instruction can be used for efficiently implementing loops. 

 

Your task is to fill out Worksheet 2.B for DBNEZ instruction. You should try to optimize your 

implementation for the minimal number of cycles necessary and for which signals can be set to 

don’t-cares. You do not have to worry about the busy signal. 

 

(Note that the microcode for the fetch stage has changed slightly from the one in the Problem 

2.A, to allow for more efficient implementation of some instructions.)  

 

 

Problem 2.C Instruction Execution Times 

How many cycles does it take to execute the following instructions in the microcoded MIPS 

machine?  Use the states and control points from MIPS-Controller-2 in Lecture 4 and assume 

Memory will not assert its busy signal. 

 

Instruction Cycles 
SUB  R3,R2,R1  
SUBI R2,R1,#4  
SW   R1,0(R2)  
BEQZ R1,label  # (R1 == 0)  
BNEZ R1,label  # (R1 != 0)  
J    label  
JR   R1  
JAL  label  
JALR R1  

 

Which instruction takes the most cycles to execute?  Which instruction takes the fewest cycles to 

execute? 

 

 



State PseudoCode ldIR Reg 
Sel 

Reg 
Wr 

en 
Reg 

ldA ldB ALUOp en 
ALU 

ld 
MA 

Mem 
Wr 

en 
Mem 

Ex 
Sel 

en 
Imm 

µBr Next State 

FETCH0: MA <- PC; 
A <- PC 

* PC 0 1 1 * * 0 1 * 0 * 0 N * 

 IR <- Mem 1 * * 0 0 * * 0 * 0 1 * 0 N * 

 PC <- A+4; 
B <- A+4 

0 PC 1 1 * 1 INC_A_4 1 * * 0 * 0 D * 

. . .                 

NOP0: microbranch 
back to FETCH0 

* * * 0 * * * 0 * * 0 * 0 J FETCH0 

DBNEZ:                 

                 

                 

                 

                 

                 

                 

                 

                 

 

 

 

Worksheet 2.B



 

Problem 2.D Exponentiation 

Ben Bitdiddle needs to compute the power function for small numbers.  Realizing there is no 

multiply instruction in the microcoded MIPS machine, he uses the following code to calculate 

the result when an unsigned number m is raised to the nth power, where n is another unsigned 

number. 
 

    if (m == 0) { 

        result = 0; 

    } 

    else { 

        result = 1; 

        i = 0; 

 

        while (i < n) { 

            temp = result; 

            j = 1; 

            while (j < m) { 

                result += temp; 

                j++; 

            } 

            i++; 

        } 

    } 

 

The variables i, j, m, n, temp, and result are unsigned 32-bit values. 

 

Write the MIPS assembly that implements Ben’s code.  Use only the MIPS instructions that can 

be executed on the microcoded MIPS machine (ALU, ALUi, LW, SW, J, JAL, JR, JALR, 

BEQZ, and BNEZ).  The microcoded MIPS machine does not have branch delay slots.  Use R1 

for m, R2 for n, and R3 for result.  At the end of your code, only R3 must have the correct 

value.  The values of all other registers do not have to be preserved. 

 

How many MIPS instructions are executed to calculate the power function?  How many cycles 

does it take to calculate the power function?  Again, use the states and control points from MIPS-

Controller-2 and assume Memory will not assert its busy signal. 

  

m, n Instructions Cycles 

0, 1   

1, 0   

2, 2   

3, 4   

M, N   

 



Problem 3:  A 5-Stage Pipeline with an Additional Adder  
 

In this problem we consider a new datapath to improve the performance of the fully-bypassed 5-

stage 32-bit MIPS processor datapath given in Lecture 4. In the new datapath the ALU the 

Execute stage is replaced by a simple adder and the original ALU is moved from the Execute 

stage to the Memory stage (See Figure 3-A).  The adder in the 3
rd

 stage (formerly Execute) is 

used only for address calculations involving load/store instructions.  For all other instructions, 

the data is simply forwarded to the 4
th

 stage. 

 

The ALU will now run in parallel with the data memory in the 4
th

 stage of the pipeline (formerly 

Mem).  During a load/store instruction, the ALU is inactive, while the data memory is inactive 

during the ALU instructions.  In this problem we will ignore jump and branch instructions. 

 

Problem 3.A Elimination of a hazard 

 

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a 

pipeline bubble in the original datapath, but not in the new datapath.   

 

Problem 3.B New hazard           

 

Give an example sequence of MIPS instructions (five or fewer instructions) that would cause a 

pipeline bubble in the new datapath, but not in the original datapath.   

 

Problem 3.C Comparison           

 

Compare the advantages and disadvantages of the new datapath. Which one would you 

recommend? Justify your choice.



 

Problem 3.D Datapath Improvement 

Consider a MIPS ISA that only supports register indirect addressing, i.e. has no 

displacement (base+offset) addressing mode.  Assuming the new machine only had to 

support this ISA, how could the datapath be improved?  Draw the new datapath showing 

your design.  (You do not have to show everything -- just the important features like 

pipeline registers, major components, major connections, etc.)  Compare the hazards in 

this new datapath with the hazards in datapaths shown in Figure 3-A and the original 

datapath in 4.  Justify the new datapath. 

 

Problem 3.E Displacement Addressing Synthesizing 

If the MIPS ISA did not have displacement addressing, what would programmers do?  

Could you still write the same programs as before? Explain. 

 

Problem 3.F Jumps and Branches 

Now we will consider jumps and branches for the pipeline shown in part A of this 

problem.  Assume that the branch target calculation is performed in the Instruction 

Decode stage.  In what pipeline stages can you put the logic to determine whether a 

conditional branch is taken?  (don’t worry about duplicating logic)  What are the 

advantages and disadvantages between the different choices?  For each choice, consider 

the number of cycles for the branch delay, any additional stall conditions, and any 

potential changes in the clock period. 

 


