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The problem sets are intended to help you learn the material, and we encourage you to 
collaborate with other students and to ask questions in discussion sections and office hours to 
understand the problems. However, each student must turn in their own solutions to the 
problems. 
The problem sets also provide essential background material for the quizzes. The problem sets 
will be graded primarily on an effort basis, but if you do not work through the problem sets you 
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day 
the problem sets are due to give you feedback.  Homework assignments are due at the beginning 
of class on the due date. Homework will not be accepted once solutions are handed out. 



Problem P6.1: Sequential Consistency 
 
For this problem we will be using the following sequences of instructions. These are small 
programs, each executed on a different processor, each with its own cache and register set. In the 
following R is a register and X is a memory location. Each instruction has been named (e.g., B3) 
to make it easy to write answers. 
 
Assume data in location X is initially 0. 
 

Processor A Processor B Processor C 
A1: ST X, 1 B1: R := LD X C1: ST X, 6 
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X 
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R 
A4: ST X, R B4: R:= LD X C4: ST X, R 
 B5: R := ADD R, R  
 B6: ST X, R  

 
 
For each of the questions below, please circle the answer and provide a short explanation 
assuming the program is executing under the SC model.  No points will be given for just 
circling an answer! 
 
 
Problem P6.1.A  

 
Can X hold value of 4 after all three threads have completed? Please explain briefly. 
 
Yes   /   No 
 
 
 
Problem P6.1.B  

 
Can X hold value of 5 after all three threads have completed? 
 
Yes   /   No 
 
 
 



 
Problem P6.1.C  

 
Can X hold value of 6 after all three threads have completed? 
 
Yes   /   No 
 
 
 
 
Problem P6.1.D  

 
For this particular program, can a processor that reorders instructions but follows local 
dependencies produce an answer that cannot be produced under the SC model? 
 
Yes   /   No 



Problem P6.2: Synchronization Primitives  
 
One of the common instruction sequences used for synchronizing several processors are the 
LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair). 
The LdR instruction reads a value from the specified address and sets a local reservation for the 
address. The StC attempts to write to the specified address provided the local reservation for the 
address is still held. If the reservation has been cleared the StC fails and informs the CPU.  
 
 
Problem P6.2.A  

 
Describe under what events the local reservation for an address is cleared. 
 
 
 
 
Problem P6.2.B  

 
Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e., 
unaware of the addition of these new instructions?  Explain 
 
 
 
 
Problem P6.2.C  

 
Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction.  
 
 
 
 
 
Problem P6.2.D  

 
LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these 
instructions make sense in our directory-based system in Handout #12? Do they still offer an 
advantage over atomic read-test-modify instructions in a directory-based system? Please explain. 
 
 



Problem P6.3: Directory-based Cache Coherence Invalidate Protocols  
 
In this problem we consider a cache-coherence protocol presented in Handout #6.  
 
 
Problem P6.3.A Protocol Understanding 

 
Consider the situation in which memory sends a FlushReq message to a processor. This can 
only happen when the memory directory shows that the exclusive copy resides at that site. The 
memory processor intends to obtain the most up-to-date data and exclusive ownership, and then 
supply it to another site that has issued a ExReq. Table H12-1 row 21 specifies the PP behavior 
when the current cache state is C-pending (not C-exclusive) and a FlushReq is received. 
 
Give a simple scenario that causes this situation.  
 
 
 
 
Problem P6.3.B Non-FIFO Network 

 
FIFO message passing is a necessary assumption for the correctness of the protocol. Assume 
now that the network is non-FIFO. Give a simple scenario that shows how the protocol fails. 
 
 
 
 
Problem P6.3.C Replace 

 
In the current scheme, when a cache wants to voluntarily invalidate a shared cache line, the PP 
informs the memory of this operation. Describe a simple scenario where there would be an error, 
if the line was “silently dropped.” Can you provide a simple fix for this problem in the protocol? 
Give such a fix if there is one, or explain why it wouldn’t be a simple fix. 
 



 Problem P6.4: Directory-base Cache Coherence Update Protocols  
 
In Handout #6, we examined a cache-coherent distributed shared memory system. Ben wants to 
convert the directory-based invalidate cache coherence protocol from the handout into an update 
protocol. He proposes the following scheme. 
 
Caches are write-through, not write allocate. When a processor wants to write to a memory 
location, it sends a WriteReq to the memory, along with the data word that it wants written. The 
memory processor updates the memory, and sends an UpdateReq with the new data to each of 
the sites caching the block, unless that site is the processor performing the store, in which case it 
sends a WriteRep containing the new data. 
 
If the processor performing the store is caching the block being written, it must wait for the reply 
from the home site to arrive before storing the new value into its cache. If the processor 
performing the store is not caching the block being written, it can proceed after issuing the 
WriteReq. 
 
Ben wants his protocol to perform well, and so he also proposes to implement silent drops. When 
a cache line needs to be evicted, it is silently evicted and the memory processor is not notified of 
this event. 
 
Note that WriteReq and UpdateReq contain data at the word-granularity, and not at the block-
granularity. Also note that in the proposed scheme, memory will always have the most up-to-date 
data and the state C-exclusive is no longer used. 
 
As in the lecture, the interconnection network guarantees that message-passing is reliable, and 
free from deadlock, livelock, and starvation. Also as in the lecture, message-passing is FIFO. 
 
Each home site keeps a FIFO queue of incoming requests, and processes these in the order 
received. 
 
Problem P6.4.A Sequential Consistency 

 
Alyssa claims that Ben’s protocol does not preserve sequential consistency because it allows two 
processors to observe stores in different orders. Describe a scenario in which this problem can 
occur. 



 
Problem P6.4.B State Transitions 

 
Noting that many commercial systems do not guarantee sequential consistency, Ben decides to 
implement his protocol anyway.  Fill in the following state transition tables (Table P6.4-1 and 
Table P6.4-2) for the proposed scheme. (Note: the tables do not contain all the transitions for the 
protocol).  
 
No. Current State Event Received Next State Action 

1 C-nothing Load C-transient ShReq(id, Home, a) 

2 C-nothing Store   

3 C-nothing UpdateReq   

4 C-shared Load C-shared processor reads cache 

5 C-shared Store   

6 C-shared UpdateReq   

7 C-shared (Silent drop)  Nothing 

8 C-transient ShRep  data  cache, processor reads cache 

9 C-transient WriteRep   

10 C-transient UpdateReq   

Table P6.4-1: Cache State Transitions 
 
 

No. Current State Message 
Received 

Next State Action 

1 R(dir) & id ∉ dir ShReq R(dir + {id}) ShRep(Home, id, a) 

2 R(dir) & id ∉ dir WriteReq   

3 R(dir) & id ∈ dir ShReq  ShRep(Home, id, a) 

4 R(dir) & id ∈ dir WriteReq   

Table P6.4-2: Home Directory State Transitions 



 
Problem P6.4.C UpdateReq 

 
After running a system with this protocol for a long time, Ben finds that the network is flooded 
with UpdateReqs. Alyssa says this is a bug in his protocol. What is the problem and how can 
you fix it? 
 
 
 
Problem P6.4.D FIFO Assumption 

 
As in P6.3, FIFO message passing is a necessary assumption for the correctness of the protocol. 
If the network were non-FIFO, it becomes possible for a processor to never see the result of 
another processor’s store. Describe a scenario in which this problem can occur. 
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Problem P6.5: Snoopy Cache Coherent Shared Memory 
 
In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout 
#7.   
 
The following questions are to help you check your understanding of the coherence protocol.  
 
• Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the 

actions that must be taken by memory and by the different caches involved. 
• Explain why WR is not snooped on the bus. 
• Explain the I/O coherence problem that CWI helps avoid. 
 
 
Problem P6.5.A Where in the Memory System is the Current Value 

 
In Table P6.5-1, P6.5-2, and P6.5-3, column 1 indicates the initial state of a certain address X in 
a cache. Column 2 indicates whether address X is currently cached in any other cache. (The 
“cached” information is known to the cache controller only immediately following a bus 
transaction. Thus, the action taken by the cache controller must be independent of this signal, but 
state transition could depend on this knowledge.) Column 3 enumerates all the available 
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI, 
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are 
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7, 
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible 
locations where up-to-date copies of this data block could exist after the operation in 
column 3 has taken place and ignore column 4 and 5 for now.  Table P6.5-1 has been 
completed for you. Make sure the answers in this table make sense to you. 
 
 
 
Problem P6.5.B MBus Cache Block State Transition Table 

 
In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5, 
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the 
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the 
protocol should be optimized such that data is supplied using CCI whenever possible, and only 
the cache that owns a line should issue CCI. 
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Problem P6.5.C Adding atomic memory operations to MBus 

 
We have discussed the importance of atomic memory operations for processor synchronization.  
In this problem you will be looking at adding support for an atomic fetch-and-increment to the 
MBus protocol. 
 
Imagine a dual processor machine with CPUs A and B.  Explain the difficulty of CPU A 
performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s 
cache.  You may wish to illustrate the problem with a short sequence of events at processor A 
and B. 
 
Fill in the rest of the table below as before, indicating state, next state, where the block in 
question may reside, and the CPU A and MBus transactions that would need to occur atomically 
to implement a fetch-and-increment on processor A. 
 

State other 
cached 

ops actions by this 
cache 

next 
state 

this 
cache 

other 
caches 

mem 

Invalid yes read      
  write      
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initial state other 
cached 

ops actions by this 
cache 

final 
state 

this 
cache 

other 
caches 

mem 

Invalid no none none I   √ 
  CPU read CR CE √  √ 
  CPU write CRI OE √   
  replace none Impossible 
  CR none I  √ √ 
  CRI none I  √  
  CI none Impossible 
  WR none Impossible 
  CWI none I   √ 

Invalid yes none  I  √ √ 
  CPU read  CS √ √ √ 
  CPU write  OE √   
  replace same Impossible 
  CR as I  √ √ 
  CRI above I  √  
  CI  I  √  
  WR  I  √ √ 
  CWI  I   √ 

 
initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

cleanExclusive no none none CE    
  CPU read      
  CPU write      
  replace      
  CR  CS    
  CRI      
  CI      
  WR      
  CWI      

Table P6.5-1 
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initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

ownedExclusive no none none OE    
  CPU read      
  CPU write      
  replace      
  CR  OS    
  CRI      
  CI      
  WR      
  CWI      

 
initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

cleanShared no none none CS    
  CPU read      
  CPU write      
  replace      
  CR      
  CRI      
  CI      
  WR      
  CWI      

cleanShared yes none      
  CPU read      
  CPU write      
  replace same     
  CR as     
  CRI above     
  CI      
  WR      
  CWI      

Table P6.5-2 
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initial state other 

cached 
ops actions by this 

cache 
final 
state 

this 
cache 

other 
caches 

mem 

ownedShared no none none OS    
  CPU read      
  CPU write      
  replace      
  CR      
  CRI      
  CI      
  WR      
  CWI      

ownedShared yes none      
  CPU read      
  CPU write      
  replace same     
  CR as     
  CRI above     
  CI      
  WR      
  CWI      

Table P6.5-3 
 

 
 
 
 


