
 CS152 Computer Architecture and
Engineering

Memory Consistency and Cache

Coherence

April 23, 2008

Assigned April 25 Problem Set #6 Due May 6

http://inst.eecs.berkeley.edu/~cs152/sp08

The problem sets are intended to help you learn the material, and we encourage you to
collaborate with other students and to ask questions in discussion sections and office hours to
understand the problems. However, each student must turn in their own solutions to the
problems.
The problem sets also provide essential background material for the quizzes. The problem sets
will be graded primarily on an effort basis, but if you do not work through the problem sets you
are unlikely to succeed at the quizzes! We will distribute solutions to the problem sets on the day
the problem sets are due to give you feedback. Homework assignments are due at the beginning
of class on the due date. Homework will not be accepted once solutions are handed out.

Problem P6.1: Sequential Consistency

For this problem we will be using the following sequences of instructions. These are small
programs, each executed on a different processor, each with its own cache and register set. In the
following R is a register and X is a memory location. Each instruction has been named (e.g., B3)
to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C
A1: ST X, 1 B1: R := LD X C1: ST X, 6
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R
A4: ST X, R B4: R:= LD X C4: ST X, R
 B5: R := ADD R, R
 B6: ST X, R

For each of the questions below, please circle the answer and provide a short explanation
assuming the program is executing under the SC model. No points will be given for just
circling an answer!

Problem P6.1.A

Can X hold value of 4 after all three threads have completed? Please explain briefly.

Yes / No

Problem P6.1.B

Can X hold value of 5 after all three threads have completed?

Yes / No

Problem P6.1.C

Can X hold value of 6 after all three threads have completed?

Yes / No

Problem P6.1.D

For this particular program, can a processor that reorders instructions but follows local
dependencies produce an answer that cannot be produced under the SC model?

Yes / No

Problem P6.2: Synchronization Primitives

One of the common instruction sequences used for synchronizing several processors are the
LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair).
The LdR instruction reads a value from the specified address and sets a local reservation for the
address. The StC attempts to write to the specified address provided the local reservation for the
address is still held. If the reservation has been cleared the StC fails and informs the CPU.

Problem P6.2.A

Describe under what events the local reservation for an address is cleared.

Problem P6.2.B

Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e.,
unaware of the addition of these new instructions? Explain

Problem P6.2.C

Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction.

Problem P6.2.D

LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these
instructions make sense in our directory-based system in Handout #12? Do they still offer an
advantage over atomic read-test-modify instructions in a directory-based system? Please explain.

Problem P6.3: Directory-based Cache Coherence Invalidate Protocols

In this problem we consider a cache-coherence protocol presented in Handout #6.

Problem P6.3.A Protocol Understanding

Consider the situation in which memory sends a FlushReq message to a processor. This can
only happen when the memory directory shows that the exclusive copy resides at that site. The
memory processor intends to obtain the most up-to-date data and exclusive ownership, and then
supply it to another site that has issued a ExReq. Table H12-1 row 21 specifies the PP behavior
when the current cache state is C-pending (not C-exclusive) and a FlushReq is received.

Give a simple scenario that causes this situation.

Problem P6.3.B Non-FIFO Network

FIFO message passing is a necessary assumption for the correctness of the protocol. Assume
now that the network is non-FIFO. Give a simple scenario that shows how the protocol fails.

Problem P6.3.C Replace

In the current scheme, when a cache wants to voluntarily invalidate a shared cache line, the PP
informs the memory of this operation. Describe a simple scenario where there would be an error,
if the line was “silently dropped.” Can you provide a simple fix for this problem in the protocol?
Give such a fix if there is one, or explain why it wouldn’t be a simple fix.

 Problem P6.4: Directory-base Cache Coherence Update Protocols

In Handout #6, we examined a cache-coherent distributed shared memory system. Ben wants to
convert the directory-based invalidate cache coherence protocol from the handout into an update
protocol. He proposes the following scheme.

Caches are write-through, not write allocate. When a processor wants to write to a memory
location, it sends a WriteReq to the memory, along with the data word that it wants written. The
memory processor updates the memory, and sends an UpdateReq with the new data to each of
the sites caching the block, unless that site is the processor performing the store, in which case it
sends a WriteRep containing the new data.

If the processor performing the store is caching the block being written, it must wait for the reply
from the home site to arrive before storing the new value into its cache. If the processor
performing the store is not caching the block being written, it can proceed after issuing the
WriteReq.

Ben wants his protocol to perform well, and so he also proposes to implement silent drops. When
a cache line needs to be evicted, it is silently evicted and the memory processor is not notified of
this event.

Note that WriteReq and UpdateReq contain data at the word-granularity, and not at the block-
granularity. Also note that in the proposed scheme, memory will always have the most up-to-date
data and the state C-exclusive is no longer used.

As in the lecture, the interconnection network guarantees that message-passing is reliable, and
free from deadlock, livelock, and starvation. Also as in the lecture, message-passing is FIFO.

Each home site keeps a FIFO queue of incoming requests, and processes these in the order
received.

Problem P6.4.A Sequential Consistency

Alyssa claims that Ben’s protocol does not preserve sequential consistency because it allows two
processors to observe stores in different orders. Describe a scenario in which this problem can
occur.

Problem P6.4.B State Transitions

Noting that many commercial systems do not guarantee sequential consistency, Ben decides to
implement his protocol anyway. Fill in the following state transition tables (Table P6.4-1 and
Table P6.4-2) for the proposed scheme. (Note: the tables do not contain all the transitions for the
protocol).

No. Current State Event Received Next State Action

1 C-nothing Load C-transient ShReq(id, Home, a)

2 C-nothing Store

3 C-nothing UpdateReq

4 C-shared Load C-shared processor reads cache

5 C-shared Store

6 C-shared UpdateReq

7 C-shared (Silent drop) Nothing

8 C-transient ShRep data cache, processor reads cache

9 C-transient WriteRep

10 C-transient UpdateReq

Table P6.4-1: Cache State Transitions

No. Current State Message
Received

Next State Action

1 R(dir) & id ∉ dir ShReq R(dir + {id}) ShRep(Home, id, a)

2 R(dir) & id ∉ dir WriteReq

3 R(dir) & id ∈ dir ShReq ShRep(Home, id, a)

4 R(dir) & id ∈ dir WriteReq

Table P6.4-2: Home Directory State Transitions

Problem P6.4.C UpdateReq

After running a system with this protocol for a long time, Ben finds that the network is flooded
with UpdateReqs. Alyssa says this is a bug in his protocol. What is the problem and how can
you fix it?

Problem P6.4.D FIFO Assumption

As in P6.3, FIFO message passing is a necessary assumption for the correctness of the protocol.
If the network were non-FIFO, it becomes possible for a processor to never see the result of
another processor’s store. Describe a scenario in which this problem can occur.

Last updated:
4/26/2008 12:00 PM

 9

Problem P6.5: Snoopy Cache Coherent Shared Memory

In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout
#7.

The following questions are to help you check your understanding of the coherence protocol.

• Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the

actions that must be taken by memory and by the different caches involved.
• Explain why WR is not snooped on the bus.
• Explain the I/O coherence problem that CWI helps avoid.

Problem P6.5.A Where in the Memory System is the Current Value

In Table P6.5-1, P6.5-2, and P6.5-3, column 1 indicates the initial state of a certain address X in
a cache. Column 2 indicates whether address X is currently cached in any other cache. (The
“cached” information is known to the cache controller only immediately following a bus
transaction. Thus, the action taken by the cache controller must be independent of this signal, but
state transition could depend on this knowledge.) Column 3 enumerates all the available
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI,
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7,
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible
locations where up-to-date copies of this data block could exist after the operation in
column 3 has taken place and ignore column 4 and 5 for now. Table P6.5-1 has been
completed for you. Make sure the answers in this table make sense to you.

Problem P6.5.B MBus Cache Block State Transition Table

In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5,
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the
protocol should be optimized such that data is supplied using CCI whenever possible, and only
the cache that owns a line should issue CCI.

Last updated:
4/26/2008 12:00 PM

 10

Problem P6.5.C Adding atomic memory operations to MBus

We have discussed the importance of atomic memory operations for processor synchronization.
In this problem you will be looking at adding support for an atomic fetch-and-increment to the
MBus protocol.

Imagine a dual processor machine with CPUs A and B. Explain the difficulty of CPU A
performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s
cache. You may wish to illustrate the problem with a short sequence of events at processor A
and B.

Fill in the rest of the table below as before, indicating state, next state, where the block in
question may reside, and the CPU A and MBus transactions that would need to occur atomically
to implement a fetch-and-increment on processor A.

State other
cached

ops actions by this
cache

next
state

this
cache

other
caches

mem

Invalid yes read
 write

Last updated:
4/26/2008 12:00 PM

 Page 11 of 13

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

Invalid no none none I √
 CPU read CR CE √ √
 CPU write CRI OE √
 replace none Impossible
 CR none I √ √
 CRI none I √
 CI none Impossible
 WR none Impossible
 CWI none I √

Invalid yes none I √ √
 CPU read CS √ √ √
 CPU write OE √
 replace same Impossible
 CR as I √ √
 CRI above I √
 CI I √
 WR I √ √
 CWI I √

initial state other

cached
ops actions by this

cache
final
state

this
cache

other
caches

mem

cleanExclusive no none none CE
 CPU read
 CPU write
 replace
 CR CS
 CRI
 CI
 WR
 CWI

Table P6.5-1

Last updated:
4/26/2008 12:00 PM

 Page 12 of 13

initial state other

cached
ops actions by this

cache
final
state

this
cache

other
caches

mem

ownedExclusive no none none OE
 CPU read
 CPU write
 replace
 CR OS
 CRI
 CI
 WR
 CWI

initial state other

cached
ops actions by this

cache
final
state

this
cache

other
caches

mem

cleanShared no none none CS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

cleanShared yes none
 CPU read
 CPU write
 replace same
 CR as
 CRI above
 CI
 WR
 CWI

Table P6.5-2

Last updated:
4/26/2008 12:00 PM

 Page 13 of 13

initial state other

cached
ops actions by this

cache
final
state

this
cache

other
caches

mem

ownedShared no none none OS
 CPU read
 CPU write
 replace
 CR
 CRI
 CI
 WR
 CWI

ownedShared yes none
 CPU read
 CPU write
 replace same
 CR as
 CRI above
 CI
 WR
 CWI

Table P6.5-3

