
9/13/2016 CS152,	Fall	2016

CS	152	Computer	Architecture	and	Engineering

Lecture	5	- Pipelining	II
(Branches,	Exceptions)

John	Wawrzynek
Electrical	Engineering	and	Computer	Sciences

University	of	California	at	Berkeley

http://www.eecs.berkeley.edu/~johnw
http://inst.eecs.berkeley.edu/~cs152

9/13/2016 CS152,	Fall	2016

Last	time	in	Lecture	4

§ Pipelining	increases	clock	frequency,	while	growing	CPI	
more	slowly,	hence	giving	greater	performance

§ Pipelining	of	instructions	is	complicated	by	HAZARDS:
– Structural	hazards	(two	instructions	want	same	hardware	resource)
– Data	hazards	(earlier	instruction	produces	value	needed	by	later	
instruction)

– Control	hazards	(instruction	changes	control	flow,	e.g.,	branches	or	
exceptions)

§ Techniques	to	handle	hazards:
1) Interlock	(hold	newer	instruction	until	older	instructions	drain	out	of	

pipeline	and	write	back	results)
2) Bypass	(transfer	value	from	older	instruction	to	newer	instruction	as	

soon	as	available	somewhere	in	machine)
3) Speculate	(guess	effect	of	earlier	instruction)

2

Time			 =			Instructions Cycles				 Time
Program											Program				*		Instruction		*		Cycle

Reduces	because	fewer	logic	gates	
on	critical	paths	between	flip-flops

Increases	because	of	
pipeline	bubbles

9/13/2016 CS152,	Fall	2016

Control	Hazards

What	do	we	need	to	calculate	next	PC?

§ For	Jumps
– Opcode,	PC	and	offset

§ For	Jump	Register
– Opcode,	Register	value

§ For	Conditional	Branches
– Opcode,	Register	 (for	condition),	PC	and	offset

§ For	all	other	instructions
– Opcode and	PC	(and	have	to	know	it’s	not	one	of	above)

3

9/13/2016 CS152,	Fall	2016

PC	Calculation	Bubbles

4

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) x1 ← x0 + 10 IF1 ID1 EX1 MA1 WB1
(I2) x3 ← x2 + 17 IF2 IF2 ID2 EX2 MA2 WB2
(I3) IF3 IF3 ID3 EX3 MA3 WB3
(I4) IF4 IF4 ID4 EX4 MA4 WB4

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 - I2 - I3 - I4
ID I1 - I2 - I3 - I4
EX I1 - I2 - I3 - I4
MA I1 - I2 - I3 - I4
WB I1 - I2 - I3 - I4

Resource
Usage

- ⇒ pipeline bubble

9/13/2016 CS152,	Fall	2016

Speculate	next	address	is	PC+4

5

I1 096 ADD
I2 100 J 304
I3 104 ADD
I4 304 ADD

kill

A jump instruction kills (not stalls)
the following instruction

stall

How?

I2

I1

104

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

PC

9/13/2016 CS152,	Fall	2016

Pipelining	Jumps

6

I1 096 ADD
I2 100 J 304
I3 104 ADD
I4 304 ADD

kill

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M
Add

Jump?

PCSrc (pc+4 / jabs / rind/ br)

IRSrcD = Case opcodeD
J, JAL ⇒ bubble
... ⇒ IM

To kill a fetched
instruction -- Insert
a mux before IR

Any
interaction
between
stall and
jump?

bubble

IRSrcD

I2 I1

304
bubble

PC

9/13/2016 CS152,	Fall	2016

Jump	Pipeline	Diagrams

7

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 - I4 I5
EX I1 I2 - I4 I5
MA I1 I2 - I4 I5
WB I1 I2 - I4 I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: J 304 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 - - - -
(I4) 304: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

- ⇒ pipeline bubble

9/13/2016 CS152,	Fall	2016

Pipelining	Conditional	Branches

8

I1 096 ADD	
I2 100 BEQ	x1,x2	+200
I3 104 ADD
I4 300 ADD

BEQ?

I2

I1

104

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M

PCSrc (pc+4	/	jabs	/	rind	/	br)

bubble

IRSrcD

Branch	condition	is	not	known	until	the	
execute	stage	

what	action	should	be	taken	in	the
decode	stage	?

A
YALU

Taken?

9/13/2016 CS152,	Fall	2016

Pipelining	Conditional	Branches

9

I1 096 ADD	
I2 100 BEQ	x1,x2	+200
I3 104 ADD
I4 300 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M

PCSrc (pc+4	/	jabs	/	rind	/	br)

bubble

IRSrcD

A
YALU

Taken?

If	the	branch	is	taken
- kill	the	two	following	instructions
- the	 instruction	at	the	decode	stage	is	
not	valid	⇒ stall	signal	is	not	valid

I2 I1

108
I3

Bcond?

?

9/13/2016 CS152,	Fall	2016

Pipelining	Conditional	Branches

10

I1: 096 ADD	
I2: 100 BEQ	x1,x2	+200
I3: 104 ADD
I4: 300 ADD

stall

IR IR

PC addr
inst

Inst
Memory

0x4
Add

bubble

IR

E M

PCSrc (pc+4/jabs/rind/br)

bubble A
YALU

Taken?
I2 I1

108
I3

Bcond?

Jump?

IRSrcD

IRSrcE

If	the	branch	is	taken
- kill	the	two	following	instructions
- the	 instruction	at	the	decode	stage	is	
not	valid	⇒ stall	signal	is	not	valid

Ad
d

PC

PC

9/13/2016 CS152,	Fall	2016

Branch	Pipeline	Diagrams
(resolved	in	execute	stage)

11

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 - I5
EX I1 I2 - - I5
MA I1 I2 - - I5
WB I1 I2 - - I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQ +200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 - - -
(I4) 108: IF4 - - - -
(I5) 300: ADD IF5 ID5 EX5 MA5 WB5

Resource
Usage

- ⇒ pipeline bubble

9/13/2016 CS152,	Fall	2016

Use	simpler	branches	(e.g.,	only	compare	one	reg
against	zero)	with	compare	in	decode	stage

12

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 - I4 I5
EX I1 I2 - I4 I5
MA I1 I2 - I4 I5
WB I1 I2 - I4 I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 - - - -
(I4) 300: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

- ⇒ pipeline bubble

9/13/2016 CS152,	Fall	2016

Branch	Delay	Slots
(expose	control	hazard	to	software)

§ Change	the	 ISA	semantics	so	that	the	 instruction	that	 follows	
a	jump	or	branch	is	always	executed
– gives	compiler	the	flexibility	to	put	in	a	useful	instruction	where	

normally	a	pipeline	bubble	would	have	resulted.

13

I1 096 ADD
I2 100 BEQZ r1, +200
I3 104 ADD
I4 300 ADD

Delay slot instruction
executed regardless of

branch outcome

9/13/2016 CS152,	Fall	2016

Branch	Pipeline	Diagrams
(branch	delay	slot)

14

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4
ID I1 I2 I3 I4
EX I1 I2 I3 I4
MA I1 I2 I3 I4
WB I1 I2 I3 I4

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 WB1
(I2) 100: BEQZ +200 IF2 ID2 EX2 MA2 WB2
(I3) 104: ADD IF3 ID3 EX3 MA3 WB3
(I4) 300: ADD IF4 ID4 EX4 MA4 WB4

Resource
Usage

9/13/2016 CS152,	Fall	2016

Post-1990	RISC	ISAs	don’t	have	delay	slots

§ Encodes	microarchitectural detail	into	ISA
– C.f.	IBM	650	drum	layout

§ Performance	issues
– E.g.,	I-cache	miss	on	delay	slot	causes	machine	to	wait,	even	if	delay	slot	
is	a	NOP

§ Complicates	more	advanced	microarchitectures
– 30-stage	pipeline	with	four-instruction-per-cycle	issue

§ Better	branch	prediction	reduced	need

15

9/13/2016 CS152,	Fall	2016

Why	an	Instruction	may	not	be	
dispatched	every	cycle	(CPI>1)

§ Full	bypassing	may	be	too	expensive	to	implement
– typically	all	frequently	used	paths	are	provided
– some	infrequently	used	bypass	paths	may	increase	cycle	time	and	

counteract	the	benefit	of	reducing	CPI

§ Loads	have	two-cycle	latency
– Instruction	after	load	cannot	use	load	result
– MIPS-I	ISA	defined	 load	delay	slots,	a	software-visible	pipeline	 hazard	

(compiler	schedules	 independent	 instruction	or	inserts NOP	to	avoid	
hazard).	Removed	 in	MIPS-II	(pipeline	 interlocks	added	in	hardware)
• MIPS:“Microprocessor without	Interlocked	Pipeline	Stages”

§ Conditional	branches	may	cause	bubbles
– kill	following	instruction(s)	 if	no	delay	slots

16

Machines	with	software-visible	delay	slots	may	execute	significant	
number	of	NOP	instructions	inserted	by	the	compiler.		NOPs
increase	instructions/program!

9/13/2016 CS152,	Fall	2016

RISC-V	Branches	and	Jumps

17

Instruction Taken	known? Target	known?

J

JR
B<cond.>

Each	instruction	fetch	depends	on	one	or	two	pieces	of	
information	from	the	preceding	instruction:

1)	Is	the	preceding	instruction	a	taken	branch?

2)	If	so,	what	is	the	target	address?

After	Inst.	Decode

After	Inst.	Decode After	Inst.	Decode

After	Inst.	Decode After	Reg.	Fetch

After Execute

9/13/2016 CS152,	Fall	2016

Branch	Penalties	in	Modern	Pipelines

18

A PC	Generation/Mux
P Instruction	Fetch	Stage	1
F Instruction	Fetch	Stage	2
B Branch	Address	Calc/Begin	Decode
I Complete	Decode
J Steer	Instructions	to	Functional	units
R Register	File	Read
E Integer	Execute

Remainder	of	execute	pipeline	
(another	6	stages)

UltraSPARC-III	 instruction	fetch	pipeline	stages
(in-order	issue,	4-way	superscalar,	750MHz,	2000)

Branch	Target	
Address	Known

Branch	Direction	&
Jump	Register	
Target	Known

9/13/2016 CS152,	Fall	2016

Reducing	Control	Flow	Penalty	

§ Software	solutions
– Eliminate	 branches	- loop	unrolling

• Increases	the	run	length	
– Reduce	resolution	time	- instruction	scheduling

• Compute	the	branch	condition	as	early	as	possible	(of	limited	 value	
because	branches	often	in	critical	path	through	code)

§ Hardware	solutions
– Find	something	else	to	do	- delay	slots

• Replaces	 pipeline	bubbles	with	useful	work	(requires	software	
cooperation)

– Speculate	- branch	prediction
• Speculative	execution	of	instructions	 beyond	the	branch

19

9/13/2016 CS152,	Fall	2016

Branch	Prediction

20

Motivation:
Branch	penalties	 limit	performance	of	deeply	pipelined	
processors
Modern	branch	predictors	have	high	accuracy
(>95%)	and	can	reduce	branch	penalties	significantly

Required	hardware	support:
Prediction	structures:

• Branch	history	tables,	branch	target	buffers,	etc.

Mispredict recovery	mechanisms:
• Keep	result	computation	separate	from	commit
• Kill	instructions	following	branch	in	pipeline
• Restore	state	to	that	following	branch

9/13/2016 CS152,	Fall	2016

Static	Branch	Prediction

21

Overall	probability	a	branch	is	taken	 is	~60-70%	but:

ISA	can	attach	preferred	direction	semantics	to	branches,	e.g.,	
Motorola	MC88110

bne0 (preferred		taken) beq0 (not	taken)

ISA	can	allow	arbitrary	choice	of	statically	predicted	direction,	
e.g.,	HP	PA-RISC,	 Intel	IA-64,	MIPS	(BEQL,	branch	on	equal	likely)

typically	reported	as	~80%	accurate

backward
90%

forward
50%

9/13/2016 CS152,	Fall	2016

Dynamic	Branch	Prediction
learning	based	on	past	behavior

§Temporal	correlation
– The	way	a	branch	resolves	may	be	a	good	predictor	of	
the	way	it	will	resolve	at	the	next	execution

§Spatial	correlation	
– Several	branches	may	resolve	 in	a	highly	correlated	
manner	(a	preferred	path	of	execution)

22

9/13/2016 CS152,	Fall	2016

Branch	Prediction	Bits

23

• Finite	state	machine	(FSM)	used	to	store	“history”	of	a	
particular	branch	instruction.

• Use	current	state	to	predict	branch,	then	update	state	
based	on	actual	branch	outcome

• Common	is	2	BP	bits	per	instruction	⇒ 4	state	FSM

• Change	the	prediction	after	two	consecutive	mistakes:

00 01 10 11

9/13/2016 CS152,	Fall	2016

Branch	History	Table	(BHT)

24

4K-entry	BHT,	2	bits/entry,	~80-90%	correct	predictions

00Fetch	PC

Branch? Target	PC

+

I-Cache

Opcode offset
Instruction

k
BHT	Index

2k-entry
BHT,
2	bits/entry

Taken/!Taken?

9/13/2016 CS152,	Fall	2016

Exploiting	Spatial	Correlation
Yeh	and	Patt,	1992

25

History	register,	H,	records	the	direction	of	the	
last	N	branches	executed	by	the	processor

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If	first	condition	false,	second	condition	
probably	also	false

9/13/2016 CS152,	Fall	2016

Two-Level	Branch	Predictor

26

Pentium	Pro	uses	the	result	from	the	last	two	branches
to	select	one	of	the	four	sets	of	BHT	bits	(~95%	correct)

00

kFetch	PC

Shift	in	Taken/!Taken	
results	of	each	branch

2-bit	global	branch	history	
shift	register

Taken/!Taken?

9/13/2016 CS152,	Fall	2016

Speculating	Both	Directions	

§ An	alternative	to	branch	prediction	is	to	execute	
both	directions	of	a	branch	speculatively
– execute	down	both	paths	until	branch	is	resolved	 (delaying	
commits)

– what	if	branch	follows	another	branch,	…
– resource	 requirement	 is	proportional	to	the	number	of	
concurrent	speculative	executions

– only	half	the	resources	 engage	in	useful	work	when	both	
directions	of	a	branch	are	executed	speculatively

– branch	prediction	takes	less	resources	 than	speculative	
execution	of	both	paths

§With	accurate	branch	prediction,	it	is	more	cost	
effective	to	dedicate	all	resources	to	the	
predicted	direction!

27

9/13/2016 CS152,	Fall	2016

Limitations	of	BHTs

28

Only	predicts	branch	direction.	Therefore,	 cannot	redirect	fetch	stream	until	
after	branch	target	is	determined.

UltraSPARC-III	 fetch	pipeline

Correctly	predicted	
taken	branch	

penalty

Jump	Register	
penalty

A PC	Generation/Mux
P Instruction	Fetch	Stage	1
F Instruction	Fetch	Stage	2
B Branch	Address	Calc/Begin	Decode
I Complete	Decode
J Steer	Instructions	to	Functional	units
R Register	File	Read
E Integer	Execute

Remainder	of	execute	pipeline	
(another	6	stages)

9/13/2016 CS152,	Fall	2016

CS152	Administrivia

§ PS1	now	due	Thursday	next	week	 instead	of	Today.

§ Quiz	1	next	week	on	Tue	Sep	20	will	cover	PS1,	Lab1,	
lectures	1-5,	and	associated	readings.

29

9/13/2016 CS152,	Fall	2016

Branch	Target	Buffer

30

BP	bits	are	stored	with	the	predicted	target	address.

IF	stage:	If	(BP=taken)	then	nPC=target	else	nPC=PC+4
Later:	check	prediction,	if	wrong	then	kill	the	instruction	and	
update	BTB	&	BPb else	update	BPb

IMEM

PC

Branch	
Target	
Buffer	
(2k entries)

k

BPbpredicted

target BP

target

9/13/2016 CS152,	Fall	2016

Address	Collisions

31

What	will	be	fetched	after	the	instruction	at	1028?
BTB	prediction =
Correct	target =

⇒

Assume	a	
128-entry	
BTB

BPbtarget
take236

1028		Add

132		Jump	+104

Instruction
Memory

236
1032

kill PC=236	and	fetch PC=1032

Is	this	a	common	occurrence?
Can	we	avoid	these	bubbles?

9/13/2016 CS152,	Fall	2016

BTB	is	only	for	Control	Instructions

32

§ BTB	contains	useful	information	for	branch	and	jump	
instructions	only

⇒ Do	not	update	 it	for	other	 instructions

§ For	all	other	instructions	the	next	PC	is	PC+4	!

§ How	to	achieve	this	effect	without	decoding	the	instruction?

9/13/2016 CS152,	Fall	2016

Branch	Target	Buffer	(BTB)

33

• Keep	both	the	branch	PC	and	target	PC	in	the	BTB	
• PC+4	is	fetched	 if	match	fails
• Only	taken branches	and	jumps	held	in	BTB
• Next	PC	determined	before branch	fetched	and	decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry	PC

=

match

predicted

target

target	PC

9/13/2016 CS152,	Fall	2016

Combining	BTB	and	BHT
§ BTB	entries	are	considerably	more	expensive	 than	BHT,	but	can	redirect	

fetches	at	earlier	stage	in	pipeline	and	can	accelerate	 indirect	branches	
(JR)

§ BHT	can	hold	many	more	entries	and	is	more	accurate

34

A PC	Generation/Mux
P Instruction	Fetch	Stage	1
F Instruction	Fetch	Stage	2
B Branch	Address	Calc/Begin	Decode
I Complete	Decode
J Steer	Instructions	to	Functional	units
R Register	File	Read
E Integer	Execute

BTB

BHTBHT	in	later	
pipeline	stage	
corrects	when	
BTB	misses	a	
predicted	taken	
branch

BTB/BHT	 only	updated	after	branch	resolves	in	E	stage

9/13/2016 CS152,	Fall	2016

Uses	of	Jump	Register	(JR)

§ Switch	statements	 (jump	to	address	of	matching	case)

§ Dynamic	function	call	(jump	to	run-time	function	address)

§ Subroutine	 returns	(jump	to	return	address)

35

How	well	does	BTB	work	for	each	of	these	cases?

BTB	works	well	if	same	case	used	repeatedly

BTB	works	well	if	same	function	usually	called,	(e.g.,	in	
C++	programming,	when	objects	have	same	type	 in	virtual	
function	call)

BTB	works	well	if	usually	return	to	the	same	place
⇒ Often	one	function	called	from	many	distinct	call	sites!

9/13/2016 CS152,	Fall	2016

Subroutine	Return	Stack

Small	structure	to	accelerate	JR	for	subroutine	returns,	 typically	
much	more	accurate	than	BTBs.		Use	instead	of	BTB	for	returns.

36

&fb()

&fc()

Push	call	address	when	
function	call	executed

Pop	return	address	when	
subroutine	return	decoded	

fa() { fb(); }

fb() { fc(); }

fc() { fd(); }

&fd() k	entries
(typically	k=8-16)

9/13/2016 CS152,	Fall	2016

Interrupts:
altering	the	normal	flow	of	control

37

Ii-1 HI1

HI2

HIn

Ii

Ii+1

program
interrupt	
handler

An	external	or	internal	event that	needs	to	be	processed	by	another	(system)	
program.	The	event	is	usually	unexpected	or	rare	from	program’s	point	of	view.	

9/13/2016 CS152,	Fall	2016

Causes	of	Interrupts

38

§ Asynchronous:	an	external	event	
– input/output	device	service-request
– timer	expiration
– power	disruptions,	hardware	 failure

§ Synchronous:	an	internal	event	(a.k.a. traps	or	exceptions)
– undefined	opcode,	privileged	instruction
– arithmetic	overflow,	FPU	exception
– misaligned	memory	access	
– virtual	memory	exceptions:	page	faults,

TLB	misses,	protection	violations
– system	calls,	e.g.,	jumps	into	kernel

Interrupt:	an	event	that	requests	the	attention	of	the	processor

9/13/2016 CS152,	Fall	2016

History	of	Exception	Handling

§ First	system	with	exceptions	was	Univac-I,	1951
– Arithmetic	overflow	would	either

• 1.	trigger	the	execution	of	a	two-instruction	fix-up	routine	at	address	0,	
or

• 2.	at	the	programmer's	option,	cause	the	computer	to	stop
– Later	Univac	1103,	1955,	modified	to	add	external	 interrupts

• Used	to	gather	real-time	wind	tunnel	data

§ First	system	with	I/O	interrupts	was	DYSEAC,	1954
– Had	two	program	counters,	and	I/O	signal	caused	switch	between	 two	PCs
– Also,	first	system	with	DMA	(direct	memory	access	by	I/O	device)

39

[Courtesy Mark Smotherman]

9/13/2016 CS152,	Fall	2016

DYSEAC,	first	mobile	computer!

40

• Carried	in	two	tractor	trailers,	12	tons	+	8	tons
• Built	for	US	Army	Signal	Corps

[Courtesy	Mark	Smotherman]

9/13/2016 CS152,	Fall	2016

Asynchronous	Interrupts:
invoking	the	interrupt	 handler

§ An	I/O	device	requests	attention	by	asserting	one	
of	the	prioritized	interrupt	request	lines

§When	the	processor	decides	to	process	the	
interrupt	
– It	stops	the	current	program	at	instruction	Ii,	completing	
all	the	 instructions	up	to	Ii-1 (precise	interrupt)

– It	saves	the	PC	of	instruction	Ii in	a	special	register	(EPC)
– It	disables	interrupts	and	transfers	control	to	a	
designated	 interrupt	handler	running	in	kernel	mode

41

9/13/2016 CS152,	Fall	2016

Interrupt	Handler

§ Saves	EPC	before	enabling	interrupts	to	allow	nested	
interrupts	⇒
– need	an	instruction	to	move	EPC	into	GPRs	
– need	a	way	to	mask	further	interrupts	at	least	until	EPC	can	be	saved

§ Needs	to	read	a status	register that	indicates	the	cause	of	
the	interrupt

§ Uses	a	special indirect	jump	instruction	RFE	(return-from-
exception)	which
– enables	 interrupts
– restores	the	processor	to	the	user	mode
– restores	hardware	status	and	control	state

42

9/13/2016 CS152,	Fall	2016

Synchronous	Interrupts

§ A	synchronous	 interrupt	(exception)	 is	caused	by	a	
particular	instruction

§ In	general,	 the	instruction	cannot	be	completed	and	needs	
to	be	restarted after	the	exception	has	been	handled
– requires	undoing	the	effect	of	one	or	more	partially	executed	
instructions

§ In	the	case	of	a	system	call	trap,	the	instruction	is	
considered	to	have	been	completed	 	
– a	special	jump	instruction	involving	a	change	to	privileged	kernel	
mode

43

9/13/2016 CS152,	Fall	2016

Exception	Handling	5-Stage	Pipeline

§ How	to	handle	multiple	simultaneous	exceptions	 in	
different	pipeline	stages?

§ How	and	where	to	handle	external	asynchronous	
interrupts?

44

PC
Inst.	
Mem D Decode E M

Data	
Mem W+

Illegal	
Opcode Overflow Data	address	

Exceptions
PC	address	
Exception

Asynchronous	Interrupts

9/13/2016 CS152,	Fall	2016

Exception	Handling	5-Stage	Pipeline

45

PC
Inst.	
Mem D Decode E M

Data	
Mem W+

Illegal	
Opcode

Overflow Data	address	
Exceptions

PC	address	
Exception

Asynchronous
Interrupts

Exc
D

PC
D

Exc
E

PC
E

Exc
M

PC
M

Ca
us
e

EP
C

Kill	D	
Stage

Kill	F	
Stage

Kill	E	
Stage

Select	
Handler	
PC

Kill	
Writeback

Commit	
Point

9/13/2016 CS152,	Fall	2016

Exception	Handling	5-Stage	Pipeline

§ Hold	exception	flags	in	pipeline	until	commit	point	(M	
stage)

§ Exceptions	 in	earlier	pipe	stages	override	 later	exceptions	
for	a	given	instruction

§ Inject	external	 interrupts	at	commit	point	(override	
others)

§ If	exception	at	commit:	update	Cause	and	EPC	registers,	
kill	all	stages,	inject	handler	PC	into	fetch	stage

46

9/13/2016 CS152,	Fall	2016

Summary	– Handling	Exceptions

§ Check	prediction	mechanism
– Exceptions	detected	at	end	of	instruction	execution	pipeline,	
special	hardware	for	various	exception	types

§ Recovery	mechanism
– Only	write	architectural	state	at	commit	point,	so	can	throw	away	
partially	executed	 instructions	after	exception

– Launch	exception	handler	after	 flushing	pipeline

§ Bypassing	allows	use	of	uncommitted	instruction	
results	by	following	instructions

47

9/13/2016 CS152,	Fall	2016

Exception	Pipeline	Diagram

48

time
t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I4 I5
ID I1 I2 I3 - I5
EX I1 I2 - - I5
MA I1 - - - I5
WB - - - - I5

time
t0 t1 t2 t3 t4 t5 t6 t7

(I1) 096: ADD IF1 ID1 EX1 MA1 - overflow!
(I2) 100: XOR IF2 ID2 EX2 - -
(I3) 104: SUB IF3 ID3 - - -
(I4) 108: ADD IF4 - - - -
(I5) Exc. Handler code IF5 ID5 EX5 MA5 WB5

Resource
Usage

9/13/2016 CS152,	Fall	2016

Acknowledgements

§ These	slides	contain	material	developed	 and	copyright	by:
– Arvind	(MIT)
– Krste	Asanovic	(MIT/UCB)
– Joel	Emer	(Intel/MIT)
– James	Hoe	(CMU)
– John	Kubiatowicz	(UCB)
– David	Patterson	(UCB)

§ MIT	material	derived	from	course	6.823
§ UCB	material	derived	from	course	CS252

49

