
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2003 Instructor: Dave Patterson 2003-10-8

CS 152 Exam #1

Personal Information

First and Last Name

 Your Login cs152-____ ____

Lab/Discussion Section Time & Location you attend

“All the work is my own. I have no prior knowledge
of the exam contents nor will I share the contents
with others in CS152 who have not taken it yet.”

 (Please
sign)

Instructions
• Partial credit may be given for incomplete

answers, so please write down as much of the
solution as you can.

• Please write legibly! If we can’t read it from 3

feet away, we won’t grade it!

• Put your name and login on each page.

• This exam will count for 16% of your grade.

Grading Results

Question
Max.
Points

Points
Earned

1 30

2 35

3 35

Total 100

Name: _________________________ Login:________________________

Page 2 of 17

Question 1: Pipelined Processors (John’s Question)

Suppose we design a 7 stage pipelined processor with 4
execution/memory stages (EX1 through EX4) and hardware
interlocks:

Assume an integer ALU latency of 0 and branches are still delayed and
calculated in the decode stage (like in the 5-stage pipeline). Additionally,
assume that the register file is designed so that when a value is written then
it will be ready later in that same cycle.

Stage usage for R-type integer instructions:

Suppose that data memory accesses take 2 EX cycles: one cycle to calculate
the effective address (addrc), and one cycle to access the result (mem) (like
the 5-stage pipeline) for both floating-point stores and integer stores.

Stage usage for memory access instructions:

We have additional the additional stages (EX3 and EX4) because our
processor supports floating-point operations.

IF
fetch

ID
decode

EX
1

EX
2

EX
3

EX
4

WB
regwr

IF
fetch

ID
decode

EX
1

EX
2

EX
3

EX
4

WB
regwr

Name: _________________________ Login:________________________

Page 3 of 17

Question 1: Pipelined Processors [continued]

1a: Suppose that this processor requires a 2-cycle latency between the

following instructions:

 add.d F4, F0, F2

 s.d F4, 0(R1)

(add.d is a floating-point addition instruction, and s.d is a floating-
point store. F0, F2, F4 refer to floating point registers, and R1 refers to
a regular integer register.)

Similar to the pictures for integer and memory instructions, fill in the
values for the stages used for a FLOATING POINT ALU operation. If
a stage is unused, put 'nop'. If a label is not obvious (like 'fetch') please
explain it.

Stages used for a floating-point ALU instruction:

1b: How did you figure out the stages in 1a without us telling you? Please
be brief but precise.

IF

ID

EX
1

EX
2

EX
3

EX
4

WB

Name: _________________________ Login:________________________

Page 4 of 17

Question 1: Pipelined Processors [continued]

1c: Imagine that the following loop had just finished executing its 100th

iteration on the 7-stage pipeline. How many more clock cycles will it
take for the pipeline to finish the 101st iteration?

Loop: l.d F0, 0(R1)

 add.d F4, F0, F2
 s.d F4, 0(R1)
 addiu R1, R1, -8
 bne R1, R2, Loop

Answer:_______ clock cycles

1d: Reorder the instructions from question 2 so that the number of stalls is

minimized. How many cycles are there between the finishing of the
100th and 101st iterations now?

Reordered code:

Name: _________________________ Login:________________________

Page 5 of 17

Answer:_______ clock cycles

Name: __________________________ Login: ____________________

Page 6 of 17

Question 1: Pipelined Processors [continued]

1e: A forwarding path from stage X to stage Y is written as:

X to Y
This means that the register after stage X can forward some value to the
beginning of stage Y (i.e. after the register between stage Y-1 and Y).

 In the table below, we have listed all of the possible forwarding paths among

ID, EX1, and EX2. We'd like you to tell us which ones are useful (in the sense
that a forwarding circuit between the two stages will do useful work) and, if a
forwarding path is useful, which values and instructions the forwarding will
be used for. For this problem, you may assume that there are four general
types of instructions: integer ops, loads/stores, floating point ops,
and branches.

Forwarding
Path

Useful? If yes, which values can be forwarded? For
which types of instructions?

ID to ID

YES NO

ID to EX1

YES NO

ID to EX2

YES NO

EX1 to ID

YES NO

EX1 to EX1

YES NO

EX1 to EX2

YES NO

Name: _________________________ Login:________________________

Page 7 of 17

EX2 to ID

YES NO

EX2 to EX1

YES NO

EX2 to EX2

YES NO

Name: _________________________ Login:________________________

Page 8 of 17

Question 2: Single Cycle Processor (Jack’s Question)
Your single-cycle processor seems to be executing random instructions. You have
been chosen by your group to investigate and find out why. On the next page you
will find a picture of your datapath (note that this is a slightly different
datapath than shown in lecture), and the control table is below. You suspect that
the controller may be broken. You may assume that the modules within the
datapath (i.e. extender, alu) all work.

 PCSrc RegDst RegWr ExtOp ALUSrc ALUctr MemW

r
MemToRe
g

addu 0 0 1 1 X 0 0 0
subu 0 1 1 X 0 0 0 0
ori 0 1 1 0 X 2 0 0
Lw 0 1 1 1 1 0 1 1
Sw 0 x 0 0 1 0 1 x
beq Equal x 0 X 0 3 0 x
Jr 2 x 0 X x X 0 x
‘‘Equal’’ means that PCSrc takes on the value of the equal signal coming out of the
=0? module. This will either be 0 or 1.

Looking at your partners’ online notebooks, you find the following (you may assume
these to be correct):

• The register file (regWr) and data memory (MemWr) both write when their
respective write signals are 1

• The extender will zero extend if the ExtOp bit is 0, and the extender will sign
extend when the ExtOp control bit is 1.

• The data memory reads asynchronously but has synchronous writes (just like
your single cycle lab).

• The =0? module will output 1 if the input to the module is 0, else it will
output 0.

The ALUctr encoding is as follows:
Control bits Operation
0 add
1 sub
2 or
3 Xor

For the following stream of instructions, what does your broken processor actually
do? The first instruction has already been done for you as an example. If there is
more than one possibility, please list all of them (note that this may be a different
instruction, correct behavior, or an undefined instruction). If the incorrect result
does not match a valid MIPS instruction, please give a sequence of instructions that
correspond to the behavior. Also give a very brief explanation of your possibilities.
For simplicity, we have used the actual register numbers rather than the names.

Name: _________________________ Login:________________________

Page 9 of 17

D
at

ap
at

h
fo

r Q
ue

st
io

n
2

(F
ee

l f
re

e
to

 te
ar

 o
ut

.)

Name: _________________________ Login:________________________

Page 10 of 17

Question 2: Single Cycle Processor [continued]

Original Instruction Possibilities

addu $1, $2, $0

addu $1, $2, $0 (if aluSrc is 0------correct behavior)
addiu $1, $2, 33(if aluSrc is 1------incorrect behavior)

subu $4, $5, $6

ori $7, $8, 0x0025

beq $11, $12, 24

sw $10, -12($31)

lw $9, -16($29)

Name: _________________________ Login:________________________

Page 11 of 17

Name: _________________________ Login:________________________

Page 12 of 17

Question 3: Multicycle Processor (Kurt’s Question)

We'd like to give you a feel for how microprogramming can help out with tricky
CISC instructions. We'd like you to implement a new addressing mode (register
indirect; i.e. register value is an address with no offset) for the sub instruction:

 sub.mem $rd $rs $rt # Mem[$rd] = Mem[$rs] - Mem[$rt]

Your solutions to 3a-d will be graded, in part, on elegance!

3a: Please come up with a suitable machine representation for sub.mem. You

may assume that opcode 44hex and funct 44hex are both unused. Make your
representation clean and complementary to the MIPS datapath.

Here's an example of what we are looking for (for nor):

Now do the same for sub.mem.

Name: _________________________ Login:________________________

Page 13 of 17

Question 3: Multicycle [continued] - Datapath

3b: Above is the multicycle datapath from lecture. Please draw below any

changes to the datapath to support your sub.mem. YOU MAY NOT ADD
ANY REGISTERS!!! (Do everything with muxes and simple, combinational
modules.) Don't redraw the entire datapath --- just circle the areas you’re
changing in the above diagram and then re-draw modules and muxes that
you have changed (including control line names) below.
DRAW LEGIBLY.

Name: _________________________ Login:________________________

Page 14 of 17

Question 3: Multicycle [continued] - Datapath

3c: Above is the microassembly language description from lecture. Please

describe any additions or modifications to microassembly language necessary
to support sub.mem. Be sure to include the field name, the new field values,
as well as EXACTLY which control lines are set when the field value is
asserted. Be precise and print legibly!

Name: _________________________ Login:________________________

Page 15 of 17

Question 3: Multicycle [continued] - Datapath

3d: Above are the implementations for a few MIPS instructions in our

microassembly language. Please give a complete microcode assembly
implementation for your sub.mem. You may assume that dispatch will jump
to a label named ‘sub.mem’.
Print legibly.

Name: _________________________ Login:________________________

Page 16 of 17

Question 3: Multicycle [continued] - Datapath

3e. EXTRA CREDIT: QUITE DIFFICULT AND NOT WORTH MANY
POINTS:

(We suggest that you finish all the other problems on the exam
before you attempt this one.) 5 EC points.

Using your new datapath and control from above, please implement the
Subtract and Branch if Negative (SBN) instruction in microcode:

sbn $rs $rt immed # Mem[$rs] = Mem[$rs]-Mem[$rt]

 # if (Mem[$rs]<0) goto PC+4+immed

Please give a machine representation (like 3a), draw any changes to the
datapath (like 3b), explain any new microassembly fields and values (like
3c), and give the complete microassembly sequence (like 3d).
Again: No new registers.

Hint: You already have the sub.mem part almost done --- the hard part is
figuring out how to jump.

 Machine Representation:

 Datapath Changes

(You may assume your new datapath from 3b.)

Name: _________________________ Login:________________________

Page 17 of 17

Question 3: Multicycle [continued] - Datapath

3e continued:

 Additions to microassembly language:

 SBN microassembly implementation (complete):

