Problem set 4 solutions

7.10 We're designing a counter that counts from 0 to 9 and returns to 0 , so we'll implement with 4 bits, and encode the states in binary. Because we only need 10 states, we'll have six rows of "don't care", which will make the implementation logic easier. Of course, depending on how the "don't care's" end up being implemented, we might

Q3 Q2 Q1 Q0 Q3+ Q2+ Q1+ Q0+ T3 T2 T1 T0 S3 R3 S2 R2 S1 R1 S0 R0 J3 K3 J2 K2 J1 K1 J0 K0 $\begin{array}{rllllllllllllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & \mathrm{x} & 0 & \mathrm{x} & 0 & \mathrm{x} & 1 & 0 & 0 & \mathrm{x} & 0 & \mathrm{x} & 0 & \mathrm{x} & 1 & \mathrm{x} \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \mathrm{x} & 0 & \mathrm{x} & 1 & 0 & 0 & 1 & 0 & \mathrm{x} & 0 & \mathrm{x} & 1 & \mathrm{x} & \mathrm{x} & 1 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & \mathrm{x} & 0 & \mathrm{x} & \mathrm{x} & 0 & 1 & 0 & 0 & \mathrm{x} & 0 & \mathrm{x} & \mathrm{x} & 0 & 1 & \mathrm{x} \\ 3 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & \mathrm{x} & 1 & 0 & 0 & 1 & 0 & 1 & 0 & \mathrm{x} & 1 & \mathrm{x} & \mathrm{x} & 1 & \mathrm{x} & 1 \\ 4 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & \mathrm{x} & \mathrm{x} & 0 & 0 & \mathrm{x} & 1 & 0 & 0 & \mathrm{x} & \mathrm{x} & 0 & 0 & \mathrm{x} & 1 & \mathrm{x} \\ 5 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & \mathrm{x} & \mathrm{x} & 0 & 1 & 0 & 0 & 1 & 0 & \mathrm{x} & \mathrm{x} & 0 & 1 & \mathrm{x} & \mathrm{x} & 1 \\ 6 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & \mathrm{x} & \mathrm{x} & 0 & \mathrm{x} & 0 & 1 & 0 & 0 & \mathrm{x} & \mathrm{x} & 0 & \mathrm{x} & 0 & 1 & \mathrm{x} \\ 7 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & \mathrm{x} & \mathrm{x} & 1 & \mathrm{x} & 1 & \mathrm{x} & 1 \\ 8 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \mathrm{x} & 0 & 0 & \mathrm{x} & 0 & \mathrm{x} & 1 & 0 & \mathrm{x} & 0 & 0 & \mathrm{x} & 0 & \mathrm{x} & 1 & \mathrm{x} \\ 9 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & \mathrm{x} & 0 & \mathrm{x} & 0 & 1 & \mathrm{x} & 1 & 0 & \mathrm{x} & 0 & \mathrm{x} & \mathrm{x} & 1 \\ 10 & 1 & 0 & 1 & 0 & \mathrm{x} \\ 11 & 1 & 0 & 1 & 1 & \mathrm{x} \\ 12 & 1 & 1 & 0 & 0 & \mathrm{x} \\ 13 & 1 & 1 & 0 & 1 & \mathrm{x} \\ 14 & 1 & 1 & 1 & 0 & \mathrm{x} \\ 15 & 1 & 1 & 1 & 1 & \mathrm{x} & \mathrm{x}\end{array}$
7.10 part b continued) To implement the counter in T, SR, and JK flip-flops, we first need to write down the excitation for those flip-flops based on the current state and next state (above).
Notice that the columns for the SR and JK flip flops are identical, except that where ever the SR pair was a 01 the
JK pair is an x1, and whenever the SR was a 10 , the JK is a 1 x . K-maps and functions are below and on the following page.

Part c) For the D-FF implementation, based on what I circled in the K-maps, I fill in the ' x 's as 1 s or 0 s, and figure out where my "don't care" states ended up. As it turns out, they all eventually go to the main sequence, so this is a self starting counter.

