Memory Timing

You are working for a company that is very concerned with the reliability of their computer systems. They decide that they want to continuously validate the memory modules using a redundant memory scheme. The base unit of the system will be a pair of 8x1 DRAMs. The DRAM’s will store identical information (one is a copy of the other). During the refresh cycle, the information in the corresponding addresses of the 2 modules will be swapped and compared. If the memory is ok, the bits should still be the same. Otherwise, an error should be asserted so that the appropriate ECC can be used to repair the information and the user can be notified of the RAM failure.

The memory controller system is running at 100 Mhz. Each cell of the DRAM must be refreshed every 10.25 s.

a.) Design the FSM to control the swapping and comparison. The memory modules share the data line and address bus, so you may buffer one bit of data. (i.e. both modules cannot output information at the same time.) Be sure to start with a timing analysis of the problem (Draw a timing diagram!) and a state transition diagram once you have figured out what the timing contraints are. Show all steps of the FSM design, including timing diagram, state transition diagram, state transition table, and logic equations. Explain what type of flipflop you would use in your design and why. You do not need to optimize the logic. (Hint: You will have to do some careful timing. Do not drive the data line with both RAMs at the same time and make sure the data and address lines are stable when writing. You will probably have to use negative edge triggered devices in your design.)

The first step is to draw a general timing diagram without a clock shown to get the general idea of how this device needs to work. We will call one RAM A and the other B. We will arbitrarily choose to buffer B’s value while swapping. Thus, the first portion of our cycle needs to enable the output of B and store it in the availible FF. We will use a signal called FF-enable to denote the enable input on this FF. Since the FF needs to store its data, it will have a tri-state link to the data line activated by FF-OE.

The first graph shows the general timing without any clock. You can just layout the signals to the OE’s don’t overlap and the the WE’s go high with stable values. The CountE signal enables the counters that cycle through the addresses. The compare function will compare the value in the FF with the value on the data line to see if they are the same.

OEA

OEB

WEA

WEB

FF-enable
FF-OE

CountE

Address

Compare

The second step is to analyze how long we have to refresh each bit. Since we have 8 address lines we get 28 = 256 cells to refresh. Since each cell must be refreshed every 10.25 s, we have 10.25 s/ 256 cells = ~40 ns/cell. Since our clock period is 10 ns (1/100 Mhz), we have approximately 4 clock cycles in which to swap and compare each cell. This forces us to use some tight timing to make all the signal not overlap, except where desired. The second figure shows the same timing shown above with the changes aligned with clock edges (positive and negative). It is reasonable to assume that the address lines can stablize in ½ a clock cycle. The arrows mark the beginning and end of the 4 clock period cycle. The fact that it starts on a negative edge is not important. You could shift everything ½ clock cycle and align it with a positive adge and not change a thing about its functionality.

OEA

OEB

WEA

WEB

FF-enable

FF-OE

CountE

Address

Compare

 0 1 2 3 4 5 6 7

The state diagram falls out simply. You use the same synchronous design techniques as always, but consider transitions to occur on each clock edge. This gives you eight states, which can be implemented as a Moore machine. The transitions happen regardless of inputs (since there are none) and always travel in a loop. The states are numbered on the diagram. The output of each state is just the output under that ½ of a clock cycle. Given this, the eight state cycle is trivial to draw. Plus, this conveniently allows use to use a 3-bit counter as our next state decoder. The only logic left is some simple logic to control the outputs which can be done as a simple sum of products. (i.e. OEA would be “2” + “3”)

b.) Bonus: Explain how you would work read and write cycles into this refresh scheme. Do you think this scheme is a good idea? Why or why not?

A write cycle would be accomplished by disabling the OE’s of the RAMs and driving the dataline with the value to be written when the RAM chips would normally be driving it. (i.e. redirect OEA and OEB to the OE of the FF storing the value to be written.)

A read cycle would just involve reading the dataline when the compare signal is high. This would allow us to assert an error before using bad data if there is a failure.

This system is unneccesary and complex for what it does. While we do want to validate our RAM, most failures occur on poweron, meaning a simple test like the one from lab 7 performed on poweron would suffice. Additionally, the ECC’s used on the values stored in memory would already allow us to detect storage problems. The only potential advantage of this system is the possiblity of being able to route around just the failed cell rather than requiring the system to halt. (The ECC doesn’t neccesarily tell us which cell failed.)

