CS150 Spring 1999 HW#7 Solutions

7.29

This problem asks you to make changes to INC_ADR, /LATCH_DATA, and /ENAB_BUF on the diagram on page 371, specifically changes that are “still logically correct.” Thus, the problem allows you to not worry about timing. An easy change that can be made is to vary the width of the pulses that are asserted, for example assert INC
_ADR for two ticks rather than one.

You can also change when a pulse occurs. INC_ADR can pulse at any time as long as you are not in the middle of reading or writing, i.e. as long as /CS and /WE are not disabled. This is because all the address line bits do not change at exactly the same time. Thus you could inadvertently write data to a wrong address or read a wrong address.

/LATCH_DATA cannot be de-asserted during the write cycle because you don’t want to latch data when you are writing because the I/O lines of the SRAM act like inputs, not outputs, during a write. During a read, however, as long as the SRAM has had enough time to place the data on the output lines, you can de-assert /LATCH_DATA at any time. Thus, /LATCH_DATA can be de-asserted at any time after /CS has gone low.

/ENAB_BUF cannot be de-asserted during the read cycle because you don’t want to tri-state on the input lines to the SRAM while you are trying to read out because this can cause shorts from ground to VDD (logic 0 to 1) which is a dangerous situation. During a write however, you need to de-assert the /ENAB_BUF to enable the input lines to connect to the SRAM. /ENAB_BUF can be de-asserted at any time as long as it overlaps with the period of time during which /CS and /WE are de-asserted also.

Below is a possible implementation. Note to reader: As long as the students timing waveform is logically correct (as outline above) then full credit should be given.

[image: image1.png]R B M N B B B

=y

=1

RexaCyle
= =

ey

ehts

=T

