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1 Introduction

Sections 1.1 to 1.6 discuss always@ blocks in Verilog, and when to use the two major flavors of always@
block, namely the always@( * ) and always@(posedge Clock) block.

1.1 always@ Blocks

always@ blocks are used to describe events that should happen under certain conditions. always@ blocks
are always followed by a set of parentheses, a begin, some code, and an end. Program 1 shows a skeleton
always@ block.

Program 1 The skeleton of an always@ block

1 always @( ... sensitivity list ... ) begin

2 ... elements ...

3 end

In Program 1, the sensitivity list is discussed in greater detail in Section 1.5. The contents of
the always@ block, namely elements describe elements that should be set when the sensitivity list is
“satisfied.” For now, just know that when the sensitivity list is “satisfied,” the elements inside the
always@ block are set/updated. They are not otherwise.

Elements in an always@ block are set/updated in sequentially and in parallel, depending on the type
of assignment used. There are two types of assignments: <= (non-blocking) and = (blocking).

1.2 <= (non-blocking) Assignments

Non-blocking assignments happen in parallel. In other words, if an always@ block contains multiple <=

assignments, which are literally written in Verilog sequentially, you should think of all of the assignments
being set at exactly the same time. For example, consider Program 2.

Program 2 <= assignments inside of an always@ block

4 always @( ... sensitivity list ... ) begin

5 B <= A;

6 C <= B;

7 D <= C;

8 end

Program 2 specifies a circuit that reads “when the sensitivity list is satisfied, B gets A’s value, C gets
B’s old value, and D gets C’s old value.” The key here is that C gets B’s old value, etc (read: think OLD
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value!. This ensures that C is not set to A, as A is B’s new value, at the instant of the always@ block’s
execution. Non-blocking assignments are used when specifying sequential1 logic (see Section 1.4).

1.3 = (blocking) Assignments

Blocking assignments happen sequentially. In other words, if an always@ block contains multiple =

assignments, you should think of the assignments being set one after another. For example, consider
Program 3.

Program 3 = assignments inside of an always@ block

1 always @( ... sensitivity list ... ) begin

2 B = A;

3 C = B;

4 D = C;

5 end

Program 3 specifies a circuit that reads “when the sensitivity list is satisfied, B gets A, C gets B, and
D gets C.” But, by the time C gets B, B has been set to A. Likewise, by the time D gets C, C has been set
to B, which, as we stated above, has been set to A. This always@ block turns B, C, and D into A. Blocking
assignments are used when specifying combinational logic (see Section 1.5).

1.4 always@(posedge Clock) Blocks

always@(posedge Clock) (“always at the positive edge of the clock”) or always@(negedge Clock) (“al-
ways at the negative edge of the clock”) blocks are used to describe Sequential Logic, or Registers.
Only <= (non-blocking) assignments should be used in an always@(posedge Clock) block. Never use =

(blocking) assignments in always@(posedge Clock) blocks. Only use always@(posedge Clock) blocks when
you want to infer an element(s) that changes its value at the positive or negative edge of the clock.

For example, consider Figure 1, a recreation of Program 2 that uses posedge Clock as its sensitivity
list. Figure 1 is also known as a shift register. The completed always@ block is shown in Program 4.

Figure 1 A shift register
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1.5 always@( * ) Blocks

always@( * ) blocks are used to describe Combinational Logic, or Logic Gates. Only = (blocking)
assignments should be used in an always@( * ) block. Never use <= (non-blocking) assignments in
always@( * ) blocks. Only use always@( * ) block when you want to infer an element(s) that changes
its value as soon as one or more of its inputs change.

1This point might be confusing. We said that non-blocking statements happen in parallel. Yet, they are useful for
specifying sequential logic? In digital design, sequential logic doesn’t refer to things happening in parallel or a sequence,
as we have been discussing, but rather to logic that has state.
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Program 4 A shift register, using <= assignments inside of an always@(posedge Clock) block

1 always @(posedge Clock) begin

2 B <= A;

3 C <= B;

4 D <= C;

5 end

Always use ‘*’ (star) for your sensitivity list in always@( * ) blocks. The sensitivity list specifies
which signals should trigger the elements inside the always@ block to be updated. For example, given 3
wires A, B and C, we can create an and gate through Program 5, and shown graphically in Figure 2.

Program 5 An and gate inside of an always@( * ) block

1 always @(A or B) begin

2 C = A & B;

3 end

Figure 2 The and gate produced by Program 5 (this is a normal and gate!)
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Program 5 specifies that “when A or B change values, update the value of every element inside the
always@( * ) block. In this case, the only element inside the always@( * ) block is C, which in this case
is assigned the and of A and B. A very common bug is to introduce an incomplete sensitivity list. See
Program 6 for two examples of incomplete sensitivity lists.

Program 6 An and gate with an incomplete sensitivity list (this is incorrect!)

1 always @(A) begin

2 C = A & B;

3 end

1 always @(B) begin

2 C = A & B;

3 end

In Program 6, the first example produces an and gate that only updates its output C when A changes.
If B changes, but A does not change, C does not change because the always@(A) block isn’t executed.
Likewise, the second example produces an and gate that doesn’t react to a change in A. Incomplete
sensitivity lists are almost NEVER what you want! They introduce very hard-to-find bugs.
As such, we use always@( * ). The ‘*’ is shorthand for always@(A or B) in our examples. In other
words, ‘*’ sets the sensitivity list to any values that can have an impact on a value(s) determined by the
always@( * ) block. ‘*’ provides a bug-free shorthand for creating complete sensitivity lists.
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1.6 Pitfalls

You might be wondering what happens if you don’t follow the conventions set forth in Sections 1.4 and
1.5. The following are some easy-to-make mistakes in Verilog that can have a dramatic [and undesired]
effect on a circuit.

1. Consider the shift register from Figure 1. If you place = assignments inside of an always@(posedge

Clock) block to produce the shift register, you instead get the parallel registers shown in Figure 3
and Program 7. You might also get one register, whose output is tied to B, C and D. Both possible
outcomes are equivelent. These circuit make sense, but don’t create shift registers! (As shift
registers are common construct, we assume that you wanted to create a shift register)

Figure 3 Parallel registers
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Program 7 Parallel registers, using = assignments inside of an always@(posedge Clock) block

1 always @(posedge Clock) begin

2 B = A;

3 C = B;

4 D = C;

5 end

2. The opposite example (shown in Program 8), where we place <= assignments inside of always@( * )

is less pronounced. In this case, just consider what type of circuit you want to create: do you
want all statements to be executed in parallel or in ‘sequence’ (see Section 1.2 and 1.3)? In the
always@( * ), the distinction between <= and = is sometimes very subtle, as the point of always@

( * ) is to trigger at indefinite times (unlike the very definite posedge Clock). We recommend =

in conjunction with always@( * ) to establish good convention (as = was originally meant to be
associated with combinational logic).

Program 8 <= assignments inside of always@( * ) blocks

1 always @( * ) begin

2 B <= A;

3 C <= B;

4 D <= C;

5 end

3. Consider the case of incompletely specified sensitivity lists. An incompletely specified sensitivity
list, as discussed in Section 1.5, will create an always@ block that doesn’t always set/update its
elements when it should. In truth, synthesis tools will often know what you mean if you provide
an incomplete sensitivity list, and pretend that your sensitivity list was complete. This is not the
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case with simulation tools (like ModelSim), however. ModelSim will not correct your sensitivity
list bugs, and your simulations will be plagued with odd errors. Furthermore, the synthesis tools
catching your errors is not guarenteed. An easy way to avoid these potential problems is to use
always@( * ) as opposed to always@(Input1 or Input 2 or ...).

4. Lastly, a very subtle point which perhaps has the potential to cause the most frustration is latch
generation. If you don’t assign every element that can be assigned inside an always@( * ) block
every time that always@( * ) block is executed, a latch (similar to a register but much harder to
work with in FPGAs) will be inferred for that element. This is never what you want and is a
terrible place for bugs. As this is subtle, it is somewhat hard to visualize. Consider Program 9.

Program 9 An always@( * ) block that will generate a latch for C

1 wire Trigger , Pass;

2 reg A, C;

3

4 always @( * ) begin

5 A = 1’b0;

6 if (Trigger) begin

7 A = Pass;

8 C = Pass;

9 end

10 end

In Program 9, A and C are both assigned in at least one place inside the always@ block.

A is always assigned at least once. This is because the first line of the always@ block specifies a
default value for A. This is a perfectly valid assignment. It ensures that A is always assigned with
each execution of the always@ block.

C on the other hand is not always assigned. When Trigger = 1’b1, the if statement ‘executes’
and both A and C get set. If Trigger = 1’b0, however, the if is skipped. A is safe, as it was given a
default value on the first line of the always@ block. C on the other hand, doesn’t get assigned at all
when this happens. As such, a latch is inferred for C. The erroneous circuit depicted in Program 9
is shown in Figure 4.

Figure 4 The circuit generated by Program 9 (this is an erroneous circuit!)
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To fix this problem, we must make sure that C gets set every time the always@ block is ‘executed.’
A simple way to force this is to add another default value, depicted in Program 10 and shown in
Figure 5.

5



Program 10 An always@( * ) block that will not generate latches

1 wire Trigger , Pass;

2 reg A, C;

3

4 always @( * ) begin

5 A = 1’b0;

6 C = 1’b1;

7 if (Trigger) begin

8 A = Pass;

9 C = Pass;

10 end

11 end

Figure 5 The circuit generated by Program 10 (this is correct!)
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Default values are an easy way to avoid latch generation, however, will sometimes break the logic
in a design. As such, other ways of ensuring that each value always gets set are going to be worth
looking into. Typically, they involve proper use of the Verilog else statement, and other flow
constructs.

Know that setting a reg to itself is not an acceptable way to ensure that the reg always
gets set. For example, C = C; enjected into the top of the always@( * ) block in Program 9 will
not supress latch generation. In every ‘execution’ of an always@( * ) block, each value that is
assigned in at least one place must be assigned to a non-trivial value during every ‘execution’
of the always@( * ) block.
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